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Abstract 

When things are perceived clearly they can be detected with 
confidence. But under what conditions can one be confident that 
something is absent? Here we use a meta-perceptual illusion to 
show that confidence in absence scales not with visibility itself, 
but with the subjective belief that a stimulus would have been 
visible, if present. In two pre-registered experiments, 
participants detected the presence or absence of letters in frames 
of dynamic noise, and rated their decision confidence. Across 
trials, stimuli could appear bigger or smaller. Critically, while 
perceptual sensitivity was increased for smaller stimuli, 
participants’ meta-perceptual beliefs  (measured with 
post-experiment debriefing and prospective confidence ratings) 
were that larger letters were easier to detect. Accordingly, while 
confidence in presence scaled with objective visibility (and was 
therefore higher for smaller stimuli), confidence in absence 
scaled with beliefs about counterfactual visibility (and was 
therefore higher for bigger stimuli). This dissociation between 
the effect of stimulus size on confidence in presence and 
absence diminished as the experiment progressed: a sign of 
meta-perceptual learning. Furthermore, the effect of size on 
confidence in absence, but not in presence, correlated with a 
meta-perceptual parameter from an ideal observer model of 
perceptual detection, fitted to decision and response time data 
alone. Overall, we conclude that confidence in absence closely 
tracked participants’ model-derived expectations about the 
visibility of counterfactual stimuli. 

Keywords: perception, metacognition, counterfactual reasoning, 
absence 

Introduction 
Perceptual decisions vary not only in content, but also 

in levels of subjective persuasion: while some decisions are 
made with confidence and precision, others are 
accompanied by a subjective feeling of doubt and 
uncertainty. This subjective sense of confidence carries 
significance: in most settings, decisions that are made with 
higher levels of confidence are more likely to be correct 
(Fleming, 2024; Henmon, 1911; Nelson, 1990). In recent 
years, much research has been devoted to identifying the 
computational underpinning of perceptual confidence. 
According to inferential, or Bayesian, accounts, confidence 
reflects the estimated probability of a decision to be correct, 
as extracted based on prior knowledge and perceptual 
evidence, sometimes subject to computational constraints 
(Adler & Ma, 2018; Aitchison et al., 2015; Meyniel et al., 
2015). Alternative, heuristic accounts, argue that confidence 
reflects a simple readout of the magnitude, or precision, or 
perceptual evidence (Calder-Travis et al., 2024; Xue et al., 
2024). According to these accounts, confidence in a 

perceptual decision tracks its probability of being correct 
only by virtue of tracking the amount of perceptual evidence 
in its support. 

Critically, computational accounts of perceptual 
confidence—both inferential and heuristic—have been 
primarily designed with discrimination tasks in mind, in 
which decisions are made about the category of a presented 
stimulus (Calder-Travis et al., 2024; Rausch et al., 2018; 
Shekhar & Rahnev, 2024; Xue et al., 2024). Critically, 
however, the two model families are most clearly 
dissociated in detection tasks, in which decisions are made 
about the presence or absence of stimuli. Previous work 
(Mazor et al., 2025) showed that detection decisions are  
based not only on perceptual evidence (visibility), but also 
the believed probability of obtaining such evidence (beliefs 
about visibility)—a model-derived quantity that cannot be 
derived from the strength of perceptual evidence. The latter 
is especially salient in perceptual decisions in the absence of 
a stimulus (counterfactual visibility: “I would have seen the 
target if it was present”). To illustrate their point, Mazor and 
colleagues had participants perform a hard detection task of 
partly occluded stimuli. Decision confidence was similarly 
affected by occlusion when a target was present or absent. 
According to their model, despite this superficial similarity 
between the effects of occlusion on decisions about presence 
and absence, these two effects had different origins: 
occlusion affected confidence in presence because it 
reduced the quality of perceptual evidence, but it affected 
confidence in absence because participants believed that it 
reduced the quality of perceptual evidence, making them 
suspect that they might have missed the target. 

Like occlusion, manipulations that affect the visibility 
of stimuli normally have a similar effect on beliefs about 
visibility. But to show that counterfactual visibility uniquely 
determines confidence in absence, we needed to identify a 
manipulation that dissociates counterfactual visibility from 
true visibility. That is, we need a manipulation that affects 
visibility in a way that systematically deviates from people’s 
intuitive beliefs about their own perception. Specifically, in 
the present study, we have chosen to manipulate stimulus 
size. Evidence for a size-related bias in perception has been 
found in, for example, studies of the font size effect (e.g., 
Price et al., 2016; Rhodes & Castel, 2008), which suggest 
that larger cues can influence judgments of learning, either 
through greater encoding fluency (Koriat, 1997), or a priori 
beliefs (Yang et al., 2018).  

Thus, participants may erroneously believe that 
stimulus visibility scales with stimulus size even when this 



is not the case. Now, if confidence in absence is indeed 
uniquely determined by such beliefs about visibility, then 
we should find that it tracks this bias and decreases with 
smaller stimuli, and that this does not happen for confidence 
in presence. 

Results 
All code, anonymized data, pre-registrations, and live 

demos of the experiments can be accessed at 
github.com/self-model/confidenceInAbsenceSize.  

217 English-speaking adult participants were recruited 
via Prolific.com to take part in Exp. 1 (pre-registration: 
osf.io/r62nm), in which they detected the presence or 
absence of a target letter (A or S, on different trials) in 
dynamic patches of visual noise. The target letter was 
present on 50% of the trials, and in the remaining 50% 
target-absent trials stimuli consisted of pure noise, generated 
by sampling, with replacement, pixels from the target 
image. The stimulus appeared on the screen, refreshing at 15 
frames per second, until a response was recorded, at which 
point the participant rated their decision confidence on an 
analog scale. After applying our pre-registered exclusion 
criteria (above-chance accuracy, and no more than 25% of 
trials slower than 5 seconds or faster than 100 milliseconds), 
214 participants were included in the analysis. On average, 
participants responded correctly on 0.93 (SD=0.08) of trials, 
and had a slight but significant bias to report target absence 
(proportion of “target present” responses: M=0.48, 95% CI 
[0.48,0.49], t(213)=-3.69, p<.001). 

 
Figure 1: Experiment 1. A) Stimuli. Left: example frames 
from target-present (blue) and target-absent (red) trials. 
Right: on different trials, stimuli appeared big or small. C) 
trial structure. Participants performed two 16-trial detection 
blocks in which the target was the letter S and two blocks in 
which the target was the letter A. Stimulus presentation was 
preceded by a frame, and followed by an analog confidence 
rating scale. The order of the two letters was randomised 
between participants.  
 

Our critical manipulation was of stimulus size. Stimuli 
were 18-by-12 pixels in size, but on different trials 

individual pixels appeared large (5-by-5 screen pixels per 
stimulus pixel) or small (3-by-3 screen pixels per stimulus 
pixel). Letters were easier to detect when stimuli appeared 
smaller (d’ for small stimuli: 3.05; d’ for big stimuli: 2.88; 
difference: t(213)=3.88, p<.001), perhaps due to the spatial 
low frequency, pixelated nature of stimuli (Schyns & Oliva, 
1994). Accordingly, participants were faster to detect letters 
when they appeared small (mean median reaction time in 
correct letter detections in seconds: small: 2.03 seconds; big: 
2.15 seconds; t(213)=6.04, p<.001). They were also more 
confident in making decisions about presence when stimuli 
appeared small (mean confidence in correct letter detections 
on a 0-1 scale: small: 0.83; big: 0.80; t(213)=-6.13, p<.001), 
in line with confidence in presence tracking the objective 
visibility of stimuli. Finally, the three effects were 
correlated: participants whose perceptual sensitivity 
benefited more when stimuli appeared smaller were also 
relatively more confident (r=.26, 95% CI [.13,.38], 
t(212)=3.92, p<.001) and faster (r=-.15, 95% CI [-.28,-.02], 
t(212)=-2.19, p=.029) in their correct letter detections in 
small compared to big displays. 

Critically, however, this negative effect of stimulus size 
on target visibility went against participants’ reported 
beliefs. When asked at the end of the experiment—that is, 
after having experienced that small stimuli are easier to 
detect—whether stimulus size made any difference to task 
difficulty, only a small minority of 38/218 participants 
reported that bigger letters were harder to detect, 85 
participants reported no difference, and the remaining 92 
reported that smaller stimuli were harder to detect. 
Participants’ beliefs were not linked to the objective effect 
of size on their perceptual sensitivity (F(2,211)=0.52, 
MSE=0.42, p=.595). Exp. 2 below provides additional 
evidence that participants erroneously believed that bigger 
stimuli were easier to detect, using prospective confidence 
ratings. Together, our design produced a dissociation 
between objective and perceived difficulty: while detection 
was objectively easier when stimuli appeared small, 
participants believed the opposite was the case. 

Confidence in absence tracks believed, not 
objective, visibility 

With this dissociation, we returned to decisions about 
absence. As per our logic, these decisions are made not 
upon the accumulation of sufficient perceptual evidence for 
absence, but based on a failure to accumulate evidence for 
presence, together with a belief that such evidence would 
have been available if a target was present (Mazor, et al., 
2025). In line with this, we replicated detection asymmetries 
in reaction time (decisions about absence were on average 
slower by 0.35 seconds; t(213)=11.82, p<.001) and 
confidence (confidence in absence was on average lower by 
0.05 on a 0-1 scale; t(213) = 6.75, p < .001). 

Importantly, if decisions about absence are made based 
on a belief about visibility, rather than visibility itself, 
confidence in those trials should be lower not when 
visibility was low (big stimuli), but when visibility was 
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believed to be low in participants’ internal model of their 
own perception (small stimuli; “It would have been hard to 
see the target in this small display, so I might have missed 
it”). Indeed, unlike confidence in presence, which was 
higher for smaller stimuli, confidence in absence was higher 
for bigger stimuli (mean confidence in correct rejections: 
small: 0.76; big: 0.78; t(213)=4.68, p<.001). Furthermore, 
unlike the effect of stimulus size on confidence in presence, 
here we observed no correlation with the effect of stimulus 
size on perceptual sensitivity (r=.03, 95% CI [-.11,.16], 
t(212)=0.38, p=.703). Participants’ confidence in absence 
was determined by their beliefs about visibility, rather than 
by visibility itself. 

 

 
Figure 2: A) visual sensitivity (measured as d’) as a function 
of stimulus size. B) mean confidence in correct responses as 
a function of target presence and size. Error bars represent 
the standard error; ***: p<.001. C) correlations between the 
effect of size on perceptual sensitivity and on confidence, 
separately for target-present and target-absent decisions.  

An ideal observer model of perceptual detection 
dissociates between true and believed visibility 

As shown above, our paradigm successfully dissociated 
between true and believed visibility. A recent model of 
perceptual detection allows to formalise this dissociation, 
describing perceptual detection as a series of momentary 
decisions made by an ideal observer in a partially observed 
environment (for a more technical description of the model, 
see Mazor et al., 2025). On each trial, the agent is in one of 
two world states: a target letter is either objectively present 

or absent. The agent does not have direct access to the 
world: it only has access to the noisy all-or-none activations 
of a sensor, which activates with probability  when a θ

𝑎𝑏𝑠𝑒𝑛𝑡
target is absent, and with a higher probability  when θ

𝑝𝑟𝑒𝑠𝑒𝑛𝑡
a target is present. The agent observes a sequence of 
activations and inactivations at a rate of 20 per second, and, 
based on this information, decides whether to commit to a 
“target present” or a “target absent” decision, or, crucially, 
to accumulate more evidence. The trial ends once the agent 
commits to a decision, and the agent is internally rewarded 
only if its decision is correct. 

Critically, the agent does not know the true values of 
 and . Instead, it has subjective beliefs about θ

𝑎𝑏𝑠𝑒𝑛𝑡
θ

𝑝𝑟𝑒𝑠𝑒𝑛𝑡

these values  and , which may be more or less θ
𝑎𝑏𝑠𝑒𝑛𝑡

θ
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

accurate. This way, the model can describe a setting where 
perceptual information is of low quality ( ), θ

𝑎𝑏𝑠𝑒𝑛𝑡
≈ θ

𝑝𝑟𝑒𝑠𝑒𝑛𝑡

but the agent believes it is of high quality (θ
𝑎𝑏𝑠𝑒𝑛𝑡

< θ
𝑝𝑟𝑒𝑠𝑒𝑛𝑡

) or vice versa. Finally, in deciding how to act, the agent 
follows the optimal policy to maximise its long-term 
reward, based on its beliefs about visibility and subjective 
temporal discounting of value (which is assumed to take an 
exponential form). We derive the optimal policy by solving 
the Bellman equation using backward induction. As a 
consequence, this model does not have free parameters that 
correspond to decision biases, criterions or boundaries. 
Instead, model parameters correspond to properties of the 
sensor, the agents’ beliefs about the sensor, and the agents’ 
value function and decision noise. The model is fit to 
decisions and decision times, but qualitative predictions 
about confidence can be made by taking the model-derived 
subjective probability of being correct at the time of making 
the decision. 

Finally, increasing the size of stimuli scales the 
probability of sensor activation by a factor of α, 
corresponding to the true perceptual effect of size on 
visibility. Whenever , increasing stimulus size makes α > 1
stimuli more visible, and whenever  it makes them α < 1
less visible. The agent holds a subjective belief about this 
value, , which it uses to flexibly interpret evidence and set α
its subjective decision boundary as a function of stimulus 
size. 

Ten model parameters were fitted to the data of 
individual subjects, with the parameters of interest being  α
and , respectively corresponding to the true and believed α
effects of size on stimulus visibility. These were allowed to 
vary between 0.58 to 2.22. To account for noise in the 
decision-making process, action selection followed a 
softmax distribution. A previous study that used this model 
showed good parameter recovery (Mazor et al., 2025). 

To examine the model’s success in capturing qualitative  
patterns found in behavioural data, we simulated data from 
the fitted model parameters. The simulated data accurately 
matched participants’ actual response time and error rates, 
predicting an advantage for smaller stimuli when a target is 



present, but not when a target is absent (see Fig. 3B, left and 
middle panels). In contrast, while the model correctly 
predicted the increase in confidence for smaller stimuli in 
target-present trials, it failed to predict that the pattern 
should be opposite in target-absent trials (Fig. 3B) 
 

 
Figure 3: A) A schematic description of the ideal observer 
model. B)  Comparison of human and simulated data for 
Exp. 1, for response time, error rate, and confidence. Lines 
and points represent human data; semi-transparent 
rectangles represent data simulated from model parameters, 
which were fitted to reaction time and accuracy (but not 
confidence) data of individual participants. Rectangles are 
centred at their mean value, and their height is twice the 
standard error. 
 

We next examined the fitted parameters. Across 
participants, α was 0.87 (SD=0.37) and significantly lower 
than 1 (a t-test on log(α) against 0: t(213)=-7.90, p<.001), 
meaning that, according to the model, big stimuli were 
objectively less visible than small stimuli. Surprisingly,   α
was also slightly lower than 1 (mean=0.99, SD=0.39; a t-test 
on log( ) against 0: t(213)=-3.29, p=.001), meaning that, α
according to the model, big stimuli were also believed to be 
less visible. This goes against participants’ self-reported 
difficulty ratings and confidence in absence in Exp. 1. 
Critically however, the model correctly produced a 
significant difference between α and  across individuals α
(t(213)=-7.11, p<.001), thereby capturing the fact that 
participants systematically misrepresented the effect of 
stimulus size on stimulus visibility. 

Some support for our interpretation of these models 
parameters as reflecting true and believed visibility comes 
from their correlations with confidence effects. α, which 
reflects the effect of size on stimulus visibility, was strongly 
correlated with the effect of size on confidence in 
target-presence (rs=-.37, p<.001), but not at all in 
target-absence (rs=.03, p=.662; Fig. 4, first row). 

Conversely, , which reflects participants’ beliefs about the α
effect of size on stimulus visibility, was not correlated with 
the effect of size on confidence in presence (rs=-.08, 
p=.275), but it correlated with the effect of size on 
confidence in absence (rs=-.17, p=.014). Notably, these are 
correlations between model parameters and out-of-sample 
data which was not available to the model during the 
parameter fitting process (the model was fitted to decisions 
and decision times, not confidence ratings). This double 
dissociation supports our psychological interpretation of 
these two model parameters as reflecting true and believed 
effects of size on visibility, as well as our broader theoretical 
claim that confidence in presence reflects true visibility and 
confidence in absence reflects believed, or counterfactual, 
visibility. 

 

 
Figure 4: A) correlations between parameter  and the effect α
of size on confidence, separately for target-present and 
target-absent decisions. B) correlations between parameter  α
and the effect of size on confidence, separately for 
target-present and target-absent decisions. ***: p<.001; *: 
p<0.05. 
 
Time-resolved analysis reveals meta-perceptual 
learning within the experiment 

If participants started the experiment expecting bigger 
letters to be easier to detect, by the end of it they had 
experienced 15 minutes of feedback to the contrary, such 
that small letters were systematically easier to detect. In our 
next analysis, we asked whether experience with the task 
resulted in learning about the true effect of size on 
perceptual sensitivity, and whether this was evident in 
confidence ratings. We therefore computed the difference in 
confidence in correct responses as a function of stimulus 



size, block number (each block consisted of 16 trials) and 
target presence (see Fig. 5).  

A clear pattern emerged: the effect of size on 
confidence systematically decreased as a function of block 
number, both when a target was absent (F(1,637.92)=13.86, 
p<.001 for the fixed effect in the model 

), and, surprisingly, ∆𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ~ 𝑏𝑙𝑜𝑐𝑘 + 1|𝑠𝑢𝑏𝑗𝑒𝑐𝑡( )
when a target was present (although this decrease was not as 
steep; F(1,635.17)=5.80, p=.016). While our theoretical 
model can account for the target-absent effect as reflecting 
meta-perceptual learning, the target-present effect is harder 
to explain, especially given that the true effect of stimulus 
size on visibility, measured with detection sensitivity, 
remained similar between blocks (F(1,641)=0.59, p =.443). 
Tellingly, the two confidence effects were statistically 
independent: participants who showed the steepest drop in 
effect size across blocks in target-absent trials did not 
necessarily show a similar drop in target-present trials 
(correlation between slopes from the model 

 fitted to target-present and ∆𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 ~ 𝑏𝑙𝑜𝑐𝑘
target-absent trials of individual subjects: r=-.04, 95%CI 
[-.18, .09], t(212)=-0.63, p=.527), suggestive of a different 
mechanism behind the two effects. We return to this point in 
the Discussion. 
 

 
Figure 5: The effect of stimulus size on decision confidence 
in target-present trials (in blue) and in target-absent trials (in 
red) as a function of block number. Error bars represent the 
standard error; *: p<.05, **: p<.01, ***: p<.001  
 
Prospective confidence ratings follow beliefs about 
visibility  

We reasoned that if confidence in absence reflects 
participants’ beliefs about perception, rather than anything 
about the perceptual input itself, it should align with 
participants’ confidence prior to seeing the stimulus at all. 
In Exp. 2, we tested this hypothesis.  

147 English-speaking adult participants were recruited 
via Prolific.com to participate in Exp. 2 (pre-registration: 
osf.io/z652f). After applying our pre-registered exclusion 
criteria (above-chance accuracy, and no more than 25% of 
trials slower than 5 seconds or faster than 100 milliseconds), 
138 participants were included in the analysis. 

Similar to Exp.1, the critical manipulation was one of 
stimulus size, with stimuli appearing either large or small on 

different trials. However, this time, in the first two blocks of 
the experiment we asked participants to rate their 
confidence before deciding whether the target is present or 
absent. To this end, participants were presented with an 
empty black frame indicating the size of the stimulus they 
were about to observe and asked to rate how confident they 
are that they will be correct in the upcoming decision. Only 
afterwards were they presented with the noisy stimulus and 
asked to detect the presence or absence of the target (Fig. 
6A, first row). Blocks 3 and 4 followed a similar trial 
structure to that of Exp. 1 (Fig. 6A, second row). Since our 
time-resolved analysis from Exp. 1 revealed rapid 
meta-perceptual learning within 64 experimental trials, and 
since we were most interested in participants’ miscalibrated 
beliefs about their perception, Exp. 1 included only 32 trials: 
16 with prospective and 16 with post-decisional confidence 
ratings.  

 

Figure 6: Experiment 2. A) Trial structure in the main 
blocks of the experiment, in prospective and post-decisional 
confidence blocks (trials were preceded by a fixation cross 
and followed by a feedback screen, as in Exp. 1). B) visual 
sensitivity (measured as d’) as a function of stimulus size. 
C) The effect of frame size on prospective decision 
confidence. D) mean post-decisional confidence in correct 
responses as a function of target presence and size. Error 
bars represent the standard error; *: p <.05, ***: p<.001. 
 

Here, too, letters were easier to detect when the stimuli 
appeared smaller (d’ for small stimuli: 2.41, d’ for big 
stimuli: 2.13; t(137)=4.52 p<.001; Fig. 6B). Critically, 
prospective confidence ratings showed the opposite pattern, 
with participants being significantly more confident that 
they will be correct in their upcoming decision when they 
expected the stimulus to be big, compared to small  (mean 
confidence in upcoming letter detections on a 0-1 scale: 
small: 0.73; big: 0.78; t(137)=5.75, p<.001; Fig. 6C). This is 

http://osf.io/z652f


consistent with a prior meta-perceptual belief that bigger 
stimuli are more visible.  

Confidence in absence showed a similar pattern to 
prospective confidence (in full dissociation from objective 
accuracy), and was higher when stimuli were expected to 
appear big (mean confidence in correct rejections: small: 
0.79, big: 0.81; t(136) = 2.73, p = .007). Intriguingly, 
confidence in presence was unaffected by the size 
manipulation (mean confidence in correct letter detections: 
small: 0.83, big: 0.83; t(134) = −0.49, p = .626), and so were 
target-present reaction times (mean median reaction time in 
correct letter detections in seconds:  small: 2.28, big: 2.31, 
t(137) = 0.64, p = .522). Finally, across subjects, the effect 
of stimulus size on post-decisional confidence ratings was 
uncorrelated with the effect of stimulus size on perceptual 
sensitivity or with the effect of stimulus size on prospective 
confidence, both in target-present (all p’s>.30) and in 
target-absent trials (all p’s>.60).  

Discussion 
Like decisions about the presence of objects, decisions 

about absence vary in subjective confidence. Previous work 
argued that, despite apparent similarities, confidence in 
presence and in absence reflect two distinct quantities: the 
first is based on perceptual evidence, and the second on 
meta-perceptual beliefs (“I would have seen it if it was 
there”; Ghetti, 2003; Kanai et al., 2010; Mazor et al., 2020, 
2025; Mazor & Fleming, 2022; Meuwese et al., 2014). For 
example, Kanai et al. showed that confidence in absence 
tracks objective accuracy when sensitivity is manipulated in 
ways that can be monitored by participants (such as 
attentional manipulations) but not when manipulated in 
ways that cannot be monitored (such as perceptual 
manipulations). Only attentional manipulations allowed 
participants to monitor the likelihood with which a target 
would have been detected, if present. Outside perception, 
participants were more confident that a region was 
mine-free when the overall density of mines in the 
surrounding area was high (thereby making the absence of 
evidence for mines in the region more informative; Hsu et 
al., 2017). Similarly, people are more confident that an event 
did not occur (for example, that a name was not on a 
previously learned list) when they believe they would have 
remembered if it did (for example, because they would have 
remembered their own name; Glanzer & Adams, 1985).   

Here we provide additional support for this process 
dissociation, using a novel meta-perceptual illusion. Across 
two experiments, we show that confidence in presence 
scales with perceptual sensitivity, but that confidence in 
absence scales with participants’ miscalibrated beliefs about 
visibility. This finding has theoretical significance for two 
timely debates in cognitive science. First, it lends support to 
inferential accounts of confidence formation, in which 
confidence—or at least confidence in absence—is not a 
mere perceptual read-out of stimulus strength (Shekhar & 
Rahnev, 2024; Xue et al., 2024) but the integration of 
perceptual input with prior expectations about the world 

and, crucially, the self too (Katyal & Fleming, 2024; 
Olawole-Scott & Yon, 2024; Seow et al., 2021). And 
second, it aligns with decisions about absence involving 
sophisticated, metacognitive processes (De Cornulier, 1988; 
Levesque, 1986), making them a useful window into 
people’s models of their own minds (Mazor, 2025).  

While our proposed theoretical model accounts for 
much of the data, some patterns remain unexplained. First, a 
block-wise reduction in effect size of stimulus size on 
confidence in absence was mirrored by a similar (albeit 
weaker) reduction in the effect of size on confidence in 
presence (see Fig. 5). We interpreted the target-absent effect 
as the manifestation of meta-perceptual learning, but the 
target-present effect is harder to explain. One possibility is 
that a reduction in the effect of size on confidence in 
presence reflects perceptual learning, whereby participants 
learned to adjust their focus as a function of stimulus size 
(for example by squeezing their eyes, as some participants 
indicated in the open debrief). Crucially, however, 
participants did not get significantly better at the task as a 
function of block number, and the difference in perceptual 
sensitivity between small and big stimuli remained similar 
across blocks.  

Second, while our model accounted for response and 
response time patterns as well as for the negative effect of 
stimulus size on confidence in presence, it incorrectly 
predicted that confidence in absence should follow a similar 
trend and be higher for smaller stimuli. Despite this failure 
to predict the overall effect of stimulus size on confidence in 
absence, the meta-perceptual parameter  was correlated α
with the magnitude of this effect across participants (Fig. 
4B). Together, it seems that beliefs about visibility may 
contribute to confidence in absence in ways that are not 
captured by our ideal observer model. This may happen if, 
for example, confidence integrates post-decisional evidence 
(Petrusic & Baranski, 2003; Yeung & Summerfield, 2012), 
or weighs task difficulty as an independent factor (Katyal & 
Fleming, 2024; Olawole-Scott & Yon, 2024; Seow et al., 
2021).  

Finally, while Exp. 2 confirmed that confidence in 
absence is affected by stimulus size in a way that parallels 
the effect of size on prospective confidence, it also produced 
a series of disappointing null findings, with no significant 
effect of size on confidence in presence and no correlations 
between size effects on post-decisional confidence and on 
prospective confidence or perceptual sensitivity. 
Disappointed by these null findings, we reminded ourselves 
that Exp. 2 had a smaller sample size and only 8 trials per 
block (half the number of trials in Exp. 1). As such, we are 
not confident that these correlations are truly absent — we 
cannot be certain that we would have detected them if they 
were present.  
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