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Abstract 

According to Bayesian, “inverse optics” accounts of vision, perceiving is inferring the 

most likely state of the world given noisy sensory data. This inference depends not only on prior 

beliefs about the world, but also on an internal model specifying how world states translate to 

visual sensations. Alternative accounts explain perceptual decisions as a rule-based process, with 

no role for such beliefs about perception. Here, we contrast the two alternatives, focusing on 

decisions about perceptual absence as a critical test case. We present data from three pre-

registered experiments where participants performed a near-threshold detection task under 

different levels of partial stimulus occlusion, thereby visibly manipulating the measurement 

function going from external world states to internal perceptual states. We find that decisions 

about presence and absence are differentially sensitive to sensory evidence and occlusion. 

Furthermore, we observe reliably opposite individual-level effects of occlusion on decisions 

about absence. Our model accounts for these findings by postulating robust individual differences 

in the incorporation of beliefs about visibility into perceptual inferences, independent of 

population variability in visibility itself. We discuss implications for the varied and inferential 

nature of visual perception more broadly. 
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Beliefs about Visibility Influence Perceptual Inference 

Introduction 

After checking Taylor Swift’s Wikipedia page, we are confident that she hasn’t announced 

her retirement from music. If she had, it would have been mentioned on her page. We also 

checked cellist Natalia Gutman’s page and didn’t see any mention of a similar announcement, but 

we are not so sure she hasn’t made one since her Wikipedia page only gets updated irregularly. 

The absence of evidence on Wikipedia is enough to make a solid inference in the case of Swift 

but not in the case of Gutman because we know that information about Swift spreads more 

efficiently on the internet. In other words, we believe that something is not true when we believe 

that “if it were true, we would have heard about it” (Goldberg, 2011). 

More generally, for a decision to be rational, it should depend not only on observation and 

prior beliefs, but also on our beliefs regarding the likelihood of the observation in hand given 

competing hypotheses about the world. This role for beliefs about the evidence-generating model 

is especially pertinent when the observation in question is that no evidence is available, as the 

absence of evidence for a signal can reflect the true absence of a signal, or a failure to obtain 

evidence for it (Altman & Bland, 1995; Locke, 1690). This leaves a critical role for the decision 

maker’s internal model of how likely evidence is to become available when a signal is present 

(Oaksford & Hahn, 2004; Walton, 1992, 2010). 

According to inferential, “inverse optics” accounts of vision, a similar principle is at play 

in perception too. Such accounts describe seeing as inferring the most likely state of the world to 

have given rise to the observed sense data (see Fig. 1, Alhazen & Smith, 2001; Friston, 2010; 

Gershman, Vul, & Tenenbaum, 2012; Helmholtz, 1866). This renders percepts dependent on how 
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the sensory system maps world states to sense data, and a subjective prior, indicating what the 

observer expects to be true about the world (Ma, 2019; Maloney & Mamassian, 2009; 

Mamassian, Landy, & Maloney, 2002; Press, Kok, & Yon, 2020a; Seth, 2014; Yon & Frith, 

2021). Our focus here is on a third critical component of “inverse optics” accounts of vision: the 

observer’s internal model of the evidence-generating process by which its sensory system maps 

world states to sense data. This model is used to compare the likelihood of sensory samples under 

different world states (Herce Castañón et al., 2019; Ma, 2012). Critically, it need not be 

represented in declarative form, but can be implicitly encoded within the visual system itself. In 

the case of perceptual detection, the true model determines the objective probability that a 

stimulus would be registered in sensory channels, and the internal model determines whether the 

agent believes, explicitly or implicitly, that a stimulus would be registered in sensory channels, if 

present. We term this model-derived belief about the visibility of hypothetical stimuli “expected 

visibility”, and contrast it with visibility, which is dependent on the sensory system itself. 
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Figure 1: A schematic of an inverse optics account of vision. According to inverse optics accounts, vision 

is the process by which observers invert an internal model of optics to identify the most likely state of the 

world to have given rise to a piece of noisy evidence. Conditioned on a stimulus (top left), evidence (here, 

firing rate) is probabilistically sampled, following the true likelihood function. The agent infers the most 

likely stimulus by consulting a believed likelihood function, which is derived from a simplified model of 

their visual system, to extract a likelihood ratio (represented as the relative height of the blue and red 

dots). The likelihood ratio is integrated with prior beliefs about the world, resulting in a percept (posterior 

over world states; top right). 

Crucially, agents can vary in the degree to which they flexibly incorporate such beliefs 

about visibility into their perceptual decisions. At one end of the spectrum, observers may “invert 

optics” using fully accurate beliefs about the evidence-generating process. At the opposite end, 

observers may be entirely unaffected by the expected likelihood of evidence, interpreting 

evidence at face value. Critically, while the former requires Bayesian inference, the latter strategy 

can be implemented as a rule-based process, by setting a criterion in sensory units (“respond 

absent for anything below this level of brightness,” Treisman & Williams, 1984) or temporal 

units (“respond absent if no sensory evidence for presence has become available within this much 

time,” Chun & Wolfe, 1996), without a reference to probabilities or likelihoods. 
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To ask where human observers fall on the continuum between these two opposite poles, 

we conducted three experiments where detection decisions about presence and absence were 

made under different levels of stimulus occlusion. Our task design allowed us to experimentally 

dissociate visibility (manipulated with occlusion and random fluctuations in the appearance of 

visual stimuli) from expected visibility (manipulated with occlusion only), independently 

measuring the effects of each on perceptual decisions and confidence in presence and absence. 

We show that behavioural asymmetries in perceptual detection naturally emerge in an ideal 

observer model when only presence, but not absence, is positively represented in sensory 

channels. Using the same ideal-observer model, we show that detection decisions in the absence 

of a stimulus, their biases, timing, and confidence, are critically dependent on beliefs about the 

expected visibility of stimuli that are not physically present, broadly consistent with “inverse 

optics” accounts of vision. Finally, qualitatively opposite behavioural effects in decisions about 

absence reveal reliable population heterogeneity in the incorporation of beliefs about visibility 

into perceptual decisions, independent of variability in visibility itself. We discuss the 

implications of possessing such beliefs about visibility, as well as these qualitatively different 

patterns across individuals, for perception and cognition more broadly. 

Methods 

Task: visual detection under partial occlusion 

In three pre-registered online experiments, participants performed a near-threshold 

detection task in which they made decisions about the presence or absence of a target letter (A or 

S, in different blocks) in a noisy, dynamic stimulus (Fig. 2A). A target was present on a random 

50% of trials. The stimulus remained on the screen, refreshing at 15 frames per second, until a 

response was made. On different trials, random parts of the display were occluded by an overlaid 
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layer of static black occluders. Participants’ task was to “ignore the black stuff, focus on the noise 

that is under it, and determine whether the letter appeared in it or not”. We chose to manipulate 

stimulus visibility in this way because the effect of occlusion on visibility is relatively obvious: 

the more occluded objects are, the harder they are to see. At the same time, the extent to which 

partial occlusion is expected to affect visibility depends on observers’ internal models of optics 

and of their visual systems. This way, we assumed that occlusion may affect not only stimulus 

visibility, but also beliefs about visibility, in turn affecting perceptual decisions even when a 

target is absent (Fig. 2B). Further degrading stimulus visibility with dynamic visual noise allowed 

us to independently measure the effects of unmodelled variability in stimulus appearance on 

detection decisions. Since random fluctuations in stimulus appearance are unpredictable and 

cannot be predicted by participants’ internal models, we reasoned that they should affect 

decisions when a target is present much more than when it is absent. 

More specifically, 253 English-speaking participants, recruited from the Prolific online 

platform, took part in Exp. 1, in which either 5 or 15 percent of the stimulus pixels were occluded 

by a static layer of randomly positioned black pixels (Fig. 2C, left panels). 252 participants took 

part in Exp. 2, in which we occluded 2 or 6 entire rows of pixels, and presented the occluders for 

an additional 500 ms before stimulus onset, to facilitate a separation between the occluders and 

the noisy stimulus itself (Fig. 2C, middle panels). Exp. 2 was the only experiment in which 

participants also reported their confidence ratings on an analogue scale in blocks 3 and 4 (Fig. 

2D). We decided not to include confidence ratings in the first two blocks so as not to contaminate 

the decision process with parallel processes relating to confidence ratings. Finally, 260 

participants took part in Exp. 3, in which the central stimulus was flanked by two stimuli, partly 

hidden behind the same row occluders, which, known to participants, always had the target in 

them (Fig. 2C, right panels). The rationale for this manipulation was to increase the availability 
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of expected visibility (“what would a target look like?”), specifically in target-absent trials, 

making it easier for participants to reason “I would have seen the target if it were present”. 

After applying our pre-registered accuracy and reaction-time based exclusion criteria, 251, 

234, and 250 participants were included in the main analysis for Experiments 1, 2, and 3, 

respectively. Results from all pre-registered analyses are presented in the Appendix. 
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Figure 2: Rationale and experimental design for Experiments 1-3. A) Example frames from target-present 

(blue) and target-absent (red) unoccluded stimuli. B) Occluding more of a target letter decreases its 

visibility (measured, for example, in sensory firing rates; black lines). Occlusion has a minimal effect on 

target visibility when the target is absent. Still, Bayesian observers should be affected by occlusion even 

when a target is absent due to its effect on expected visibility (blue and red curves), which is used to 

compare the likelihood of observed sensory samples under alternative world states (blue and red dots). 

Specifically, the likelihood ratio favours target absence much more strongly under low occlusion, due to 

an increase in the likelihood of the sensory observation under target presence rather than a change in the 

sensory observation itself. C) Occlusion conditions in the three experiments. In Exp. 1, on different trials 

we occluded a random subset of 5% or 15% of the pixels in the stimulus. In Exp. 2 and 3, on different 

trials we occluded a random subset of 2 or 6 pixel rows. In Exp. 3, the task-relevant stimulus was flanked 

by two reference stimuli that, known to the subject, always had the target letter in them. Participants 

performed two 32-trial blocks in which the target was the letter S and two blocks in which the target was 

the letter A. The order of the two letters was randomised between participants. D) Trial structure in Exp. 

2.*The occluder preview screen only appeared in Exp. 2 and 3. **Confidence ratings were given only in 

Exp. 2, blocks 3 and 4 
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Reverse correlation analysis 

Since luminance values were randomly sampled per pixel and frame, the perceived 

similarity between the presented stimulus and the target letter fluctuated both within and between 

trials. This allowed us to directly measure the sensitivity of reaction times in decisions about 

presence and absence to random fluctuations in stimulus-target similarity, quantified as the 

Pearson correlation between unoccluded pixels and their corresponding pixels in the target letter, 

statistically controlling for the overall effects of target presence, occlusion level, and calibrated 

visibility. Pearson correlation was used since pixel luminance values were generated artificially 

and had no outliers. 

For each individual frame, we computed the correlation between pixel luminance values 

and the corresponding values in the target image. Occluded pixels were omitted from both 

stimulus and target image. This resulted in an uncorrected stimulus-target similarity metric, 

which was naturally higher for frames from target-present trials, and for frames with higher levels 

of stimulus visibility (𝑝, see Procedure subsection). We therefore mean-centered these correlation 

values as a function of stimulus presence, occlusion and 𝑝, to obtain an unbiased measure of 

stimulus-target similarity 𝑟. 

For each individual subject, we averaged these frame-wise correlations across frames 1-5, 

roughly corresponding to the first 300 ms of the trial (Mazor, Maimon-Mor, Charles, & Fleming, 

2023; Zylberberg, Barttfeld, & Sigman, 2012). We then extracted, for each participant, the 

Spearman correlation between these average values and trial-wise reaction times. This was done 

separately for target-present and target-absent trials. These subject-level correlations were then 

subjected to a group-level t-test. 
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In Exp. 2, a similar procedure was used to reveal correlations between stimulus-target 

similarity and subjective confidence. For each participant, we extracted the Spearman correlation 

between trial-wise values of 𝑟, averaged across frames 1-5, and trial-wise confidence ratings, 

separately for target-present and target-absent trials. We then subjected the resulting correlations 

to a group-level t-test. 

Sign Consistency Analysis 

To quantify the within-subject consistency in the effect of occlusion on reaction time, we 

used a non-parametric sign-consistency test (Yaron, Faivre, Mudrik, & Mazor, 2023). Individual-

level sign-consistency scores were obtained by randomly splitting the trials of single participants 

into two disjoint sets, and measuring the effect of occlusion on response times within each half. 

We considered as “success” cases for which the two halves showed the same qualitative effect: 

slowing down or speeding up in the high-occlusion relative to the low-occlusion condition. By 

repeating this procedure 500 times and measuring the probability of success, we obtained a single 

sign-consistency score per participant, ranging from 0 to 1, where 1 indicates perfect sign-

consistency (for every split of the data, both halves showed the same qualitative effect) and 0.5 

indicates chance sign-consistency (the probability of success is equal to the probability of 

failure). 

Averaging individual-level scores results in a group-level sign-consistency score. This 

score was compared to a null distribution, obtained by permuting the trial labels (high or low 

occlusion) before extracting 100 individual-level sign-consistency scores per participant, from 

which we extracted 10,000 group-level scores by averaging random subsets (Stelzer, Chen, & 

Turner, 2013). A significant sign-consistency score indicates that the experimental manipulation 

had a consistent effect on individual participants. 
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Results 

Presence-absence asymmetries 

Before using decisions about absence as a critical test case for the role of beliefs about 

visibility in perceptual decisions, we need to establish that these decisions are made based on the 

absence of evidence for presence, and not based on direct evidence for absence. Crucially, if the 

absence of stimuli is perceived just like their presence, decisions about absence can be affected 

by occlusion simply because occlusion affects the visibility of evidence for absence (Gold & 

Shadlen, 2001), not because participants believe that it would affect the visibility of evidence for 

presence. Pronounced behavioural asymmetries between decisions about presence and absence 

provide initial, tentative evidence against a “direct perception of absence” account. First, correct 

decisions about absence were markedly slower than decisions about presence, by hundreds of 

milliseconds (Fig. 3A). This was true in Exp. 1 (pre-registered Hypothesis 1: 1.79 vs 1.33 

seconds; 𝑡(250) = 17.40, 𝑝 < .001), Exp. 2 (2.33 vs 1.95 seconds; 𝑡(233) = 15.90, 𝑝 < .001), 

and Exp. 3 (pre-registered hypothesis 1: 2.49 vs 1.91 seconds; 𝑡(248) = 14.64, 𝑝 < .001). 

Second, in Exp. 2, confidence ratings were significantly lower in decisions about absence (pre-

registered hypothesis 7: 0.84 vs 0.86 on a 0.5 − 1 scale; 𝑡(233) = −2.92, 𝑝 = .004; Fig. 3B). 

While one could conceive of direct perception for absence, but poorer perception of it, these data 

at minimum suggest that evidence accumulation for presence and absence is not a symmetric 

process. 

Furthermore, exploratory reverse correlation analysis revealed that reaction time and 

confidence ratings were driven by different factors in decisions about presence versus absence. 

Following previous reverse correlation studies of decision confidence (Mazor et al., 2023; 

Zylberberg et al., 2012), we focused our analysis on the first 300 ms of the stimulus presentation, 
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and extracted, per trial, the mean similarity between the display and the target letter in these first 

frames. We then computed the Spearman correlation between these trial-wise similarity measures 

and the reaction times, focusing our analysis on correct responses only (see Fig. 3C). Our 

reasoning was as follows: if perceptual evidence for both presence and absence equally 

contributes to perceptual detection decisions, effects of stimulus-target similarity on target-

present reaction time and confidence should be mirrored by perfectly opposite effects of 

stimulus-target similarity in target-absent trials. If, however, only perceptual evidence for 

presence is represented, the negative effects of stimulus-target dissimilarity on target-absent 

decisions should be attenuated relative to the corresponding effects of stimulus-target similarity 

on target-present decisions. 
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Figure 3: Presence-absence asymmetries. A) Median reaction times in correct responses as a function of 

target presence. Error bars represent the standard error of the median, computed with bootstrapping. B) 

Mean confidence in correct responses as a function of target presence. Error bars represent the standard 

error of the mean. C) Analysis approach, illustrated for a single frame number. For each frame, the 

correlation between pixel luminance values and the target served as an index of stimulus-target similarity. 

This correlation was mean-centered separately as a function of occlusion level, target presence, and 

calibrated visibility levels. We then extracted, for each frame number and participant, the correlation 

between these similarity measures and their corresponding trial-wise reaction times, or confidence ratings. 

This was done separately for correct target-present and target-absent decisions. Statistical tests were 

performed on average stimulus-target similarity values from the first 300 ms of the stimulus, represented 

by a black bar in panel B. D) Mean correlations between RT and stimulus-target similarity. Error margins 

are 1 standard error from the mean. E) Mean correlations between confidence and stimulus-target 

similarity. ***: p<0.001 
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As expected, higher levels of stimulus-target similarity made participants quicker to detect 

the target letter when it was present, and this was the case in all experiments (a one sample t-test 

on within-subject correlation coefficients, extracted separately for the two occlusion levels and 

averaged per participant, Exp. 1: 𝑡(246) = −7.16, 𝑝 < .001; Exp. 2: 𝑡(250) = −7.72, 𝑝 <

.001; Exp. 3: 𝑡(216) = −6.04, 𝑝 < .001; blue curves in Fig. 3D). In contrast, higher levels of 

stimulus-target similarity made participants slower to notice the absence of the letter when it was 

absent only in Exp. 1 (𝑡(246) = 4.57, 𝑝 < .001), but not in Exp. 2 (𝑡(250) = 1.22, 𝑝 = .222, 

BF10 = 0.15) and Exp. 3 (𝑡(218) = −0.32, 𝑝 = .748, BF10 = 7.79 × 10−2). In all cases, the 

effect of stimulus-target similarity on decision times was stronger in target-present compared to 

target-absent responses (Exp. 1: 𝑡(246) = −2.07, 𝑝 = .039, Exp. 2: 𝑡(249) = −4.59, 𝑝 < .001, 

Exp. 3: 𝑡(216) = −4.77, 𝑝 < .001; red curves in Fig. 3D). 

Confidence ratings in Exp. 2 further allowed us to test the relationship between stimulus-

target similarity and subjective confidence, revealing a similar pattern. Confidence judgments in 

hits were positively correlated with stimulus-target similarity in the first 300 ms of the trial 

(𝑡(234) = 3.15, 𝑝 = .002; blue curve in Fig. 3E). In contrast, confidence in correct 

identifications of target absence showed no negative relationship to perceptual evidence 

(𝑡(242) = 0.81, 𝑝 = .418, BF10 = 0.12; red curve in Fig. 3E). Similar to reaction times, the 

difference between the effect of perceptual evidence on confidence in presence and the (negative) 

effect of perceptual evidence on confidence in absence was in itself significant (𝑡(232) = 3.14, 

𝑝 = .002). Unlike confidence in presence, confidence in absence was not based on dissimilarity 

to the target letter. 



BELIEFS ABOUT PERCEPTION SHAPE PERCEPTUAL INFERENCE 
16 

An ideal observer model of visual detection 

Presence-absence asymmetries in reaction time and confidence are expected if evidence is 

only ever available to support presence, leaving absence to be inferred tentatively and based on 

the absence of evidence. To formulate this asymmetry in the availability of evidence, we present 

a Partially Observed Markov Decision Process (POMDP, Littman, 2009) model of perceptual 

detection. Critically, our model has an asymmetric structure: it is equipped only with a presence-

sensor, but not with an absence-sensor (Fig. 4A, right panels). The sensor produces sequences of 

activations and inactivations according to a true activation probability (similar to a neuronal 

firing rate), which is sensitive to the presence of the target and to its visibility. We ask whether, 

when faced with this evidence structure, a rational agent would behave in ways that resemble the 

behaviour of our participants (Anderson, 1990). We provide a high-level description of the model 

here and a more detailed description in the Extended Methods section. As we show, presence-

absence asymmetries in decision time and decision confidence are borne out of rational evidence 

accumulation when the information value of evidence for presence and absence is itself 

asymmetrical. 
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Figure 4: An ideal observer model of visual detection. A) Model architecture. Target presence affects the 

activation probability of a presence sensor. The agent perceives a series of binary outcomes (sensor 

activations), based on which it attempts to guess the true world state (target presence or absence). This is 

done by extracting and accumulating the log likelihood ratio (LLR) for target presence versus absence and 

deciding whether to make a decision based on available evidence, or alternatively whether to accumulate 

more evidence in order to obtain a better estimate of the true activation probability. In making this 

decision, the agent balances the incentive to be as accurate as possible (only correct decisions are 

associated with an intrinsic reward) and the exponential discounting of the value of reward as a function of 

time. B) The first samples from an example trial, and their interpretation by the agent. Sensor activations 

are much more informative than sensor inactivations, as indicated by the shallow negative and steep 

positive slopes of the LLR sequence. C) Behavioural predictions for an ideal observer. The model predicts 

that decisions about absence should be slower, and that they should be accompanied by lower levels of 

subjective confidence, than decisions about presence. 

We model sensory observations as the binary (on/off) activations of a “presence sensor” 

which is probabilistically tuned to one state of the world. For example, in our illustration (Fig. 

4A) the presence sensor has a higher activation probability when a target is present (0.20) than 

absent (0.05). The agent is intrinsically rewarded for making accurate decisions regarding the 

state of the world (stimulus presence or absence), given these noisy observations. To increase the 

probability of being correct, the agent can choose to wait and accumulate more observations 
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before making a decision. However, the intrinsic value of accuracy is subject to exponential 

temporal discounting, rendering the value of later correct decisions lower than that of earlier 

ones. Thus, from the agent’s perspective, accumulating further evidence pays off exactly when 

the expected accuracy gain exceeds the discounting loss. 

Given these settings, our agent implements an optimal policy, updating its beliefs about 

the state of the world by tracking the log likelihood ratio (LLR) between presence and absence 

given each observation, and committing to a decision only when the expected value of making a 

decision is higher than the expected value of making a decision later, assuming the same policy 

will be used in later time points. We obtained the optimal policy — a probabilistic mapping from 

belief states to perceptual decisions or further evidence accumulation — using backwards 

induction (Callaway, Griffiths, Norman, & Zhang, 2023; Puterman, 2014; Tajima, Drugowitsch, 

& Pouget, 2016). Although we didn’t explicitly assume a-priori that LLR was integrated to a 

boundary, the resulting optimal policy can still be described in these terms. Optimal choices are 

made when the LLR either exceeds a positive boundary, indicating sufficient evidence for 

presence, or a separate negative boundary, indicating sufficient evidence for absence (note these 

two boundaries are not necessarily symmetric around zero; see Fig. 4B for the first time points 

from an example trial). Crucially, these boundaries are implied by the optimal policy, and are not 

themselves model parameters. As an additional measure, we assume that decision confidence 

equals the probability of being correct at the time of committing to a decision, given the 

accumulated evidence so far. 

Since sensor inactivation is the more likely state both when a stimulus is present and 

absent, it is much less informative than sensor activation: activation is 4 times more likely when a 

target is present than absent, but inactivation is more likely by a factor of only 1.18 when a target 
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is absent than present (see the smaller steps going down compared to up in Fig. 4B). This 

asymmetry in the information value of evidence for presence and absence results in further 

asymmetries in the position of the implied decision boundaries (the upper boundary is slightly 

closer to the midpoint in Fig. 4B). Together, this produces slower decisions about absence and 

lower confidence levels in such decisions compared to decisions about presence (Fig. 4C). These 

presence-absence asymmetries are consistent with the reaction time and confidence profiles 

found in perceptual detection experiments (Kellij, Fahrenfort, Lau, Peters, & Odegaard, 2021; 

Mazor, Friston, & Fleming, 2020; Mazor et al., 2023; Mazor, Moran, & Fleming, 2021; 

Meuwese, Loon, Lamme, & Fahrenfort, 2014). 

This model makes several simplifying assumptions that are important to acknowledge. 

First, the probability of sensor activation is assumed to be a function of target presence only, 

invariant to systematic changes in evidence weighting as a function of time point within a trial. 

Our model therefore does not explicitly model the increased sensitivity to visual information in 

the first 300 milliseconds of stimulus presentation (Mazor et al., 2023; Zylberberg et al., 2012). 

Second, temporal discounting is assumed to take an exponential form into an infinite temporal 

horizon, while impulsive observers may disproportionately value the present (Ainslie, 2017). 

Finally, confidence is assumed to be based on the decision variable itself, with no post-decisional 

evidence accumulation (Moran, Teodorescu, & Usher, 2015; Petrusic & Baranski, 2003; Yeung 

& Summerfield, 2012), and is assumed to be identical to the Bayesian probability of being correct 

at the time of making the decision. These simplifying assumptions enabled us to efficiently obtain 

optimal policies for different sets of beliefs and preferences as part of the model fitting process, 

and without introducing additional free variables. 

Modeling occlusion effects. 
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In light of these marked presence-absence asymmetries in reaction times, confidence 

ratings, and evidence weighting, we proceed with the assumption that positive evidence for 

absence is not explicitly coded in sensory channels. We simulate stimulus occlusion as a scaling 

of the probability of sensor activation by a parameter 𝛼 ∈ [0,1], such that 𝑝(1│𝜃, 𝛼) = 𝛼𝜃. This 

way, 𝛼 can be thought of as modulating the visibility of target-like patterns, with lower levels 

making the sensor less likely to activate (Fig. 5A). Importantly, in addition to the effects of 𝛼 on 

stimulus visibility, beliefs about 𝛼 (denoted 𝛼‾) also affect how sensory input is interpreted, and 

how much certainty agents seek before they commit to a decision. Fig. 4B illustrates the 

interpretation of the same sensory samples when the agent believes 𝛼 to be 0.8 (corresponding to 

low occlusion, in black) or 0.6 (corresponding to high occlusion, in gray). Notably, the 

information value (measured as |𝐿𝐿𝑅|) of sensor inactivation, but not sensor activation, is 

diminished when 𝛼‾ = 0.6, making the same ambiguous sequence of samples appear more 

consistent with target presence if the display is known to be occluded. 

In this model, occlusion affects the probability of obtaining positive evidence, but beliefs 

about occlusion have no effect on the interpretation of such evidence once obtained. This is true 

because, while the overall probability of obtaining positive evidence 𝑝(1) diminishes with higher 

levels of occlusion, the relative probability of such evidence given target presence or absence, 

𝑝(1|𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

𝑝(1|𝑎𝑏𝑠𝑒𝑛𝑡)
 remains unaffected. On the other hand, occlusion has little effect on the probability of 

obtaining negative evidence (in the form of sensor inactivation), but beliefs about the effects of 

occlusion affect the interpretation of such evidence once obtained. As a result, the timing and 

confidence of perceptual decisions in the absence of a target depend much more on beliefs about 

the effect of occlusion than on the true effect of occlusion on visibility. 
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To exemplify the dissociable contributions of visibility itself (𝛼) and beliefs about 

visibility (𝛼‾) to behaviour, we consider two variants of the model (Fig. 5B). Variant 𝑉𝐼𝐺𝑁𝑂𝑅𝐸  

entirely ignores the expected effects of 𝛼 on the probability of sensor activation, interpreting 

evidence in the same way in both high-occlusion and low-occlusion trials. This variant serves as 

our null model, in that it specifies that occlusion affects perception only to the extent that it 

affects the activation of sensors, but not in how these activations are interpreted or accumulated 

over time. Crucially, this model variant can be implemented without reference to the perceptual 

likelihood function, by specifying weights on sensor activation and inactivation, and fixed 

decision thresholds. 

𝑉𝐼𝑁𝐶𝑂𝑅𝑃 , on the other hand, incorporates into its perceptual decisions fully accurate beliefs 

about the effect of 𝛼 on stimulus visibility. This affects both the interpretation stage (when 𝛼 is 

believed to be low, sensor inactivation, but not sensor activation, becomes less informative) and 

the action selection stage (by affecting the expected value of future evidence, making the agent 

more willing to settle for lower decision confidence when occlusion is high). Importantly, variant 

𝑉𝐼𝑁𝐶𝑂𝑅𝑃  represents one point in the space of possible values 𝛼‾ can take relative to 𝛼: observers 

who incorporate beliefs about visibility into their perceptual decisions may underestimate the 

effect of occlusion on visibility, or overestimate it. 



BELIEFS ABOUT PERCEPTION SHAPE PERCEPTUAL INFERENCE 
22 

Figure 5: Modelling the effects of occlusion on visual detection. A) We model the effect of occlusion as 

scaling of the probability of sensor activation. B) The first sensory samples from example trials and their 

corresponding interpretations as a function of the believed visibility level. C) Reaction time and 

confidence effects in simulated rational observers as a function of target presence and absence and level of 

occlusion, correct trials only. Variant 𝑉𝐼𝑁𝐶𝑂𝑅𝑃 considers the effect of occlusion when interpreting sensory 

evidence and making decisions, whereas variant 𝑉𝐼𝐺𝑁𝑂𝑅𝐸 does not. 

The two model variants predict different effects of occlusion on accuracy, decision times 

and confidence ratings. This is especially evident in target-absent trials (red lines in Fig. 5C). 

While occluding more of the display makes 𝑉𝐼𝑁𝐶𝑂𝑅𝑃  commit more false-alarms, it makes 𝑉𝐼𝐺𝑁𝑂𝑅𝐸  

make fewer of them. 𝑉𝐼𝑁𝐶𝑂𝑅𝑃’s decisions about absence are slower when more of the display is 

occluded, whereas 𝑉𝐼𝐺𝑁𝑂𝑅𝐸’s decisions about absence are faster. Finally, 𝑉𝐼𝑁𝐶𝑂𝑅𝑃  is less confident 

in decisions about absence when more of the display is occluded, but this is not true of 𝑉𝐼𝐺𝑁𝑂𝑅𝐸 . 

Together, both the size and direction of occlusion effects on decisions about absence are 
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dependent on meta-perceptual knowledge about the influence of occlusion on visibility, or the 

incorporation of such knowledge into perceptual decisions. 

Occlusion effects 

Equipped with the predictions of the two model variants, we now turn to the experimental 

data. 

In all three experiments, occlusion had the expected effects 

on the detection of present targets (see Fig. 6A). Specifically, participants missed more targets 

when more of the display was occluded. In Exp. 1, the mean hit rate went down from 0.81 when 

5% of the pixels were occluded to 0.72 when 15% of the pixels were occluded (𝑡(250) = 8.92, 

𝑝 < .001; see Fig. 6A, blue lines). In Exp. 2, the mean hit rate went down from 0.78 when 2 rows 

of pixels were occluded to 0.66 when 6 rows were occluded (𝑡(233) = 11.83, 𝑝 < .001), and 

similar figures were obtained in Exp. 3 (from 0.85 to 0.75 in the two occlusion levels; 𝑡(248) =

12.71, 𝑝 < .001). 

Participants were also slower to correctly detect targets when more of the display was 

occluded, with a mean difference of 66 ms in Exp. 1 (pre-registered hypothesis 2, 𝑡(250) =

−3.51, 𝑝 < .001), 134 ms in Exp. 2 (𝑡(233) = −5.13, 𝑝 < .001) , and 101 ms in Exp. 3 

(𝑡(248) = −5.19, 𝑝 < .001; see Fig. 6B, blue lines). In all three experiments, this effect 

remained significant when incorporating incorrect trials into the analysis. Finally, in Exp. 2, 

confidence in presence was lower when more of the display was occluded (pre-registered 

hypothesis 8: 0.84 vs. 0.88 on a 0.5-1 scale; 𝑡(233) = 9.87, 𝑝 < .001; ; see Fig. 6C, blue line). 

Unsurprisingly, occluding more of the target made it more difficult to spot. 

Target-present trials. 
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Figure 6: Main results from Experiments 1-3. A) Miss and false alarm rates as a function of occlusion 

level. B) Mean median reaction times in target-present and target-absent correct responses, as a function 

of occlusion level. C) Mean confidence in target-present and target-absent correct responses, as a function 

of occlusion level. Error bars represent the standard error. Semi-transparent rectangles represent data 

simulated from the model, fitted to accuracy and reaction time (but not confidence) data of individual 

participants (see model-fitting section). Rectangles are centered at the mean value, and their height is 

twice the standard error. *: p<0.05, **: p<0.01, ***: p<0.001 
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Having established that occlusion affected stimulus visibility, 

making responses slower, less accurate, and accompanied by lower levels of confidence when a 

target was present, we next examined the effects of occlusion on detection responses in the 

absence of a target. If participants were, like model variant 𝑉𝐼𝑁𝐶𝑂𝑅𝑃 , effectively incorporating 

beliefs about visibility into their criterion placement, we would expect to see an increase in the 

proportion of false alarms (the proportion of incorrect target-present reports out of all target-

absent trials) when more of the target was occluded. If, however, they took evidence at face value 

like model variant 𝑉𝐼𝐺𝑁𝑂𝑅𝐸 , occlusion should be expected to reduce the false alarm rate. 

We did not observe an effect of occlusion on the false-alarm rate in Exp. 1 (from 0.17 to 

0.18 when 5 or 15 percent of the stimulus pixels were occluded, 𝑡(250) = −1.16, 𝑝 = .249). We 

therefore made the occlusion manipulation clearer to participants in Exp. 2 and 3, occluding 

entire rows and up to 35% of the display. An increase in the false-alarm rate with higher levels of 

occlusion, consistent with variant 𝑉𝐼𝑁𝐶𝑂𝑅𝑃 , was observed in Exp. 2 (from 0.13 to 0.15 when 2 or 

6 rows were occluded, 𝑡(233) = −2.26, 𝑝 = .025) and 3 (from 0.19 to 0.23 when 2 or 6 rows 

were occluded, 𝑡(248) = −4.98, 𝑝 < .001). A significant increase in the effect of occlusion on 

the false alarm rates between Exp. 2 and 3 (a between-subject t-test, 𝑡(480.40) = −2.09, 𝑝 =

.037) is consistent with the use of beliefs about visibility to make decisions in the absence of a 

target: in Exp. 3, but not in Exp. 2, the central stimulus was flanked by two target-present stimuli 

which were hidden behind the same occluders, making the effect of occlusion on visibility 

visually available even in target-absent trials (see Fig. 2D, right panel). 

In line with the predictions for variant 𝑉𝐼𝑁𝐶𝑂𝑅𝑃 , but not 𝑉𝐼𝐺𝑁𝑂𝑅𝐸 , confidence in absence 

was lower when more of the display was occluded (pre-registered hypothesis 9: 0.83 vs. 0.87; 

𝑡(233) = 10.54, 𝑝 < .001). Furthermore, we find no difference between the effects of occlusion 

Target-absent trials. 
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on confidence as a function of target presence (pre-registered hypothesis 10: 𝑡(233) = 0.01, 𝑝 =

.992, BF10 = 7.32 × 10−2; see Fig. 6D). Participants were less confident in the absence of a 

target when it would have been harder to see. 

Finally, the two model variants made opposite predictions for the effect of occlusion on 

reaction times in the absence of a target. While model variant 𝑉𝐼𝑁𝐶𝑂𝑅𝑃  predicted slower decisions 

about absence with more occlusion, model variant 𝑉𝐼𝐺𝑁𝑂𝑅𝐸  predicted the opposite pattern. 

Intriguingly, an effect of occlusion on target-absent reaction times did not emerge in any of the 

three experiments. Specifically, we observed a mean difference of 6 ms in Exp. 1 (pre-registered 

hypothesis 3, 𝑡(250) = 0.30, 𝑝 = .765; BF10 = 7.39 × 10−2), 15 ms in Exp. 2 (𝑡(233) = 0.79, 

𝑝 = .429; BF10 = 9.97 × 10−2) , and 20 ms in Exp. 3 (𝑡(248) = 0.68, 𝑝 = .498; BF10 =

9.97 × 10−2; BF10 = 6.91 × 10−2 when pooling data from all three experiments, reflecting 

strong evidence for the null hypothesis; see Fig. 6B, red lines). 

Additional data reveals individual differences in occlusion effects on inference about 

absence 

Occlusion affected the false-alarm rate and subjective confidence in a way that is 

consistent with the incorporation of counterfactual visibility into inferences about absence, but 

the absence of an effect on decision time was inconsistent with both models: model 𝑉𝐼𝑁𝐶𝑂𝑅𝑃  

predicted a positive effect, and model 𝑉𝐼𝐺𝑁𝑂𝑅𝐸  a negative one. We considered the possibility that 

this null group-level result may reflect population variability in the incorporation of beliefs about 

visibility into perceptual decisions, with some behaving more in line with the prediction of model 

𝑉𝐼𝑁𝐶𝑂𝑅𝑃 , incorporating expected visibility into their perceptual decisions about absence and 

slowing down when more of the display is occluded, and others more in line with the predictions 



BELIEFS ABOUT PERCEPTION SHAPE PERCEPTUAL INFERENCE 
27 

of model 𝑉𝐼𝐺𝑁𝑂𝑅𝐸 , underestimating the effect of occlusion on stimulus visibility or ignoring it 

altogether, resulting in speedier decisions about absence for more occluded displays. 

This population-mixture model predicts that despite a group-level null effect, some 

individual participants should show reliable effects of occlusion on “target absent” reaction 

times: negative for some participants, and positive for others. To test this prediction, we collected 

a large number of test trials from a random subset of ten participants who took part in Exp. 2 and 

3 (see Fig. 7A). Over the course of five sessions we collected 896 trials per participant, with the 

exception of two participants in Exp. 3 for which we have 672 and 864 trials. 

The high number of trials per participant allowed us to quantify the consistency of the 

effect of occlusion on target-absent RTs within individual participants. For each participant, we 

compared their target-absent response times in high- and low- occlusion trials with a t-test. If 

decision times were invariant to the effect of stimulus occlusion, this would be expected to result 

in a significant test statistic in 1 out of 20 participants, on average, corresponding to our 

significance level of 0.05. Strikingly, however, out of 20 participants the effect of occlusion on 

“target absent” decision times was significant in 8, split exactly half-half between significant 

positive effects (more consistent with model variant 𝑉𝐼𝑁𝐶𝑂𝑅𝑃) and significant negative effects 

(more consistent with model variant 𝑉𝐼𝐺𝑁𝑂𝑅𝐸): much higher than the 1/20 probability expected by 

chance alone (𝑝 < 0.001 in a binomial test against 𝑝 = 0.05). 

As a more sensitive test of effect reliability, we employed the non-parametric sign-

consistency test (Yaron et al., 2023): randomly splitting individual participants’ trials into two 

subsets, and asking whether both subsets demonstrate the same type of outcome: either positive 

or negative (see Fig. 7B and Methods). The group-level mean sign-consistency, or the proportion 
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of these random splits where the same outcome is observed in both subsets, is then compared 

against a bootstrapped null distribution to obtain a group-level p-value. 

Figure 7: Sign consistency analysis. A) Occlusion effect distributions in Exp. 2 and 3. Individual 

participants are represented as circles. In order to obtain sufficient statistical power, we collected hundreds 

of trials from a random subset of 10 participants who participated in each experiment (marked with filled 

circles). B) An illustration of the sign-consistency test, for a hypothetical participant. Sign consistency is 

the proportion of random splits, out of 500, for which both trial subsets show the same qualitative effect. 

Individual sign-consistency scores are then averaged and compared against a non-parametric null-

distribution to obtain a p-value. C) Sign consistency results. Within each panel, we present median RT as 

a function of occlusion level for each participant on the left. Color saturation indicates sign-consistency. 

On the right, we present individual sign-consistency scores as circles, alongside the group-average sign 

consistency score (horizontal line), overlaid on top of the non-parametric null distribution. In both 

experiments, group-level sign-consistency was significantly above chance for the effect of occlusion on 

response-time in target-absent trials. *: p<0.05, **: p<0.01, ***: p<0.001 
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In both experiments we find clear evidence for above-chance sign-consistency in the 

effects of occlusion on reaction times in target-absent trials (Exp. 2: sign consistency=0.72, 𝑝= 

.003; Exp. 3: sign consistency=0.86, 𝑝< .001; see Fig. 7C). Moreover, target-absent sign-

consistency scores were not significantly different from, and numerically higher than, target-

present sign-consistency scores (Exp. 2: sign consistency=0.63, 𝑝= .073; Exp. 3: sign 

consistency=0.76, 𝑝< .001). These data provide clear evidence that an effect of expected 

visibility on “target absent” response times was not absent in Experiments 2 and 3: it was masked 

by differences between individual participants who systematically exhibit positive and negative 

effects. 

Interestingly, this population variability in target-absent response times aligned with 

population variability in the effect of occlusion on the false alarm rates. In both long experiments, 

participants who were slower to make decisions about absence in the high-occlusion condition 

were also more likely to make more false alarms in this condition (Spearman correlation between 

occlusion effects on target-absent reaction times and on the false alarm rate: 𝑟s = .47, 𝑆 =

704.00, 𝑝 = .038). This positive correlation is the opposite of what is expected based on a speed-

accuracy trade-off, which would predict an increase in accuracy among participants who slow 

down in the high-occlusion condition. In contrast, it is expected if participants varied in the 

degree to which expected visibility fed into their perceptual decisions, that is, in their alignment 

with 𝑉𝐼𝑁𝐶𝑂𝑅𝑃  versus 𝑉𝐼𝐺𝑁𝑂𝑅𝐸 . 

Model fitting reveals individual differences in the incorporation of expected visibility into 

perceptual decisions 

In order to map this behavioural variability onto the model parameter space, we fitted 

model parameters to the response and response time data of participants (but not to confidence 
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ratings, which were treated as an out-of-sample test for our model predictions; see Extended 

Methods for details about the model fit procedure and Appendix for parameter and model 

recovery results). 

Specifically, we fitted four model variants to response and response time data. The full 

“inverse optics” model had an asymmetric architecture, with a presence sensor but no absence 

sensor. In this model, the physical visibility of stimuli (parameters θ and α ) and participants’ 

beliefs regarding these quantities (parameters 𝜃‾ and 𝛼‾), were allowed to independently vary. As a 

result, this model could capture miscalibrated beliefs about the effect of occlusion on visibility, 

such as a belief that occlusion has an effect on visibility, but a lesser effect than its actual, true 

effect. A “symmetric” model was similar to the “inverse optics” model, but had an absence 

sensor with a perfectly symmetric tuning curve to that of the presence sensor. Together, this 

produces a neuron/antineuron architecture, in which perceptual decisions can be made in a rule-

based manner, and without reference to likelihoods (Gold & Shadlen, 2001). An “IGNORE” 

variant was similar to the “inverse optics” variant, with the exception that the agent was assumed 

not to incorporate beliefs at all about the effect of occlusion on visibility into their decisions. Like 

the symmetric model, this variant too can be implemented as a fixed decision rule and without 

reference to likelihoods or probabilities. Finally, an “INCORP” variant was similar to the 

“inverse optics” variant, but agents were assumed to incorporate perfectly accurate beliefs about 

the effect of occlusion on visibility. 

For a formal model comparison, we used data from the 20 participants from whom we 

collected hundreds of trials. We used the Akaike Information Criterion (AIC) to identify the best-

fitting model for each individual participant, as this criterion showed good model recovery (see 

Appendix). Out of 20 participants, one participant was best fitted by the symmetric model, six 
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were best fitted by the IGNORE model, four were best fitted by the INCORP model, and the 

remaining nine were best fitted by the full “inverse optics” model, in which visibility and beliefs 

about visibility varied independently. Given that IGNORE and INCORP are private cases of the 

“inverse optics” model, we continue with describing the fit of this more general model to the 

data. 

As shown in Fig. 6 (semi-transparent rectangles), the model captures key aspects in the 

data, including the difference in reaction times as a function of target presence or absence, the 

increase in “target present” reaction times as a function of occlusion, and the invariance of “target 

absent” reaction times to occlusion. Despite being fitted to response and response-time data only, 

the model also captures the two main qualitative patterns in confidence ratings: lower confidence 

in absence than in presence judgments, and lower confidence in high versus low occlusion. For 

comparison, the IGNORE variant fitted the data relatively well in target-present trials, predicting 

an increase in RT and in the error rate, but it made incorrect predictions about target-absent trials, 

predicting a decrease in RT and a reduction in the false-alarm rate (see Appendix). Furthermore, 

perceptual evidence, quantified as sensor activation sequences, contributed more to decision time 

and decision confidence when a target was present than absent, mirroring the reverse correlation 

findings from human data (see Appendix). 

Notably, the full model captures the overall bias to report absence in Exp. 2 (0.56 of all 

observed and simulated responses) and presence in Exp. 3 (0.51 of all simulated responses, 0.52 

of all observed responses) although the prior probability of target absence is assumed to be 

known to be 0.5 in both experiments, and the incentive structure is fully symmetric with respect 

to false alarms and misses. A response bias emerges due to asymmetries in the likelihood 

function, and the different information value of evidence for presence versus absence. 
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Some aspects of the data were not captured by our model, including the group-level effect 

of occlusion on the false alarm rate in Exp. 2 and 3 and the relatively slower error trials (in the 

Appendix we show that allowing visibility and beliefs about visibility to vary between trials can 

account for the relationship between accuracy and reaction time). Furthermore, while our model 

captured the fact that “target-absent” responses are overall slower, it underestimated this effect 

(see Fig. 6B), suggesting that other processes, perhaps outside perception (Beltrán, Liu, & Vega, 

2021; Zang, Vega, Fu, Wang, & Beltrán, 2022), contribute to the difference in response times 

between target-present and target-absent responses. However, this seems a valid assumption. 

Finally, while reverse correlation analysis of simulated sensor activations produced the 

qualitative asymmetry between evidence weighting leading to target-present or target-absent 

decisions, it did not produce the characteristic temporal profile of reaction-time and confidence 

kernels observed in human observers (Mazor et al., 2023; Zylberberg, Wolpert, & Shadlen, 

2018), suggesting that other factors contribute to observers’ increased perceptual sensitivity early 

in the trial. 

The model successfully captured some, but not all, population variability in the effects of 

occlusion on error rates and reaction times. Specifically, the Spearman correlation between the 

effect of occlusion on target-absent decision times in human data and in simulated data, generated 

using the parameters fitted to individual subjects, was 𝑟s = .28 in Exp. 1, 𝑟s = .46 in Exp. 2, and 

𝑟s = .43 in Exp. 3. 

Inspecting the fitted model parameters revealed that overall, 𝛼 and 𝛼‾ were correlated 

across individuals (Exp. 1: 𝑟s = .60; Exp. 2: 𝑟s = .55; Exp. 3: 𝑟s = .67; see Appendix for full 

distributions), meaning participants’ beliefs about the effects of occlusion on visibility were 

proportional to the true effect of occlusion on stimulus visibility. Importantly, despite this strong 
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alignment, participants had an overall tendency to act in accordance with a belief that occlusion 

affected visibility to a lesser degree than its true effect (Exp. 1: 𝑡(250) = 5.56, 𝑝 < .001; Exp. 2: 

𝑡(233) = 6.72, 𝑝 < .001; Exp. 3: 𝑡(248) = 5.04, 𝑝 < .001). While occlusion had a similar 

effect on 𝛼 in Exp. 2 and 3 (𝑡(475.56) = 0.59, 𝑝 = .552), the added reference stimuli in Exp. 3 

affected 𝛼‾, bringing it closer to 𝛼 itself (a contrast between |𝛼 − 𝛼‾| in Exp. 2 and 3: 𝑡(461.16) =

2.14, 𝑝 = .033). This is in line with the theoretical interpretation of these two model parameters 

as being based in the true and believed effects of occlusion on visibility, respectively. 

Finally, we compared the effects of 𝛼 (true visibility) and 𝛼‾ (beliefs about visibility) on 

accuracy and reaction times in target-present and target-absent trials by extracting Spearman 

correlations between fitted parameters and individual-level contrasts of interest. A clear picture 

emerges: while 𝛼 explains more variance than 𝛼‾ in decision accuracy and decision times in 

target-present trials (first two columns in Table 1), the opposite is true for target-absent trials (last 

two columns in Table 1). Together, model fit results confirm that beliefs about visibility play a 

role in perceptual decisions, that this is especially true in decisions about target absence, and that 

this is subject to significant population variability. 
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Table 1: Spearman correlations between model parameters and occlusion effects on accuracy and reaction 

times. Darker shades of blue indicate lower p-values. One, two and three asterisks represent significance 

at the 0.05, 0.01, and 0.001 levels. The visibility parameter is correlated with occlusion effects when a 

target is present (first two columns), but the parameter controlling beliefs about visibility is correlated 

with occlusion effects when a target is absent (left two columns). 

 exp misses 
RT 
present 

false 
alarms 

RT 
absent 

α 

1 0.69*** -0.16** -0.048 0.069 

2 0.71*** -0.21** -0.088 -0.054 

3 0.52*** -0.17** -0.07 0.074 

ᾱ 

1 0.18** -0.009 0.31*** -0.052 

2 0.13 -0.046 0.39*** -0.19*** 

3 0.066 0.021 0.37*** -0.1 

Discussion 

Much focus has been placed on the role of prior expectations in perceptual inference (Kok, 

Brouwer, Gerven, & de Lange, 2013; Powers, Mathys, & Corlett, 2017; Press, Kok, & Yon, 

2020b; Summerfield & Egner, 2009; Weilnhammer, Stuke, Sterzer, & Schmack, 2018; Yon et al., 

2023; Yon, Zainzinger, de Lange, Eimer, & Press, 2021), with important discussions regarding 

the (im)penetrability of visual perception to such effects from cognition (Firestone & Scholl, 

2016; Pylyshyn, 1999) and potential implications for models of delusions and schizophrenia 

(Corlett et al., 2019; Haarsma, Deveci, Corbin, Callaghan, & Kok, 2023; Powers et al., 2017; 

Stuke, Weilnhammer, Sterzer, & Schmack, 2019) . Here we focus on the other component of 

Bayesian reasoning, often neglected in such discussions: beliefs about the mapping from world 

states to sensory input. Unlike prior expectations about the world (e.g., the probability that 

someone would be knocking on my door), beliefs about the likelihood of observations given 

world states describe the perceptual system itself (e.g., the probability that I would be able to hear 
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the knock if someone was knocking on my door). Previous work postulated a role for such meta-

perceptual beliefs in implicit and explicit measures of decision confidence (Hellmann, 

Zehetleitner, & Rausch, 2023; Herce Castañón et al., 2019; Olawole-Scott & Yon, 2023; Rausch, 

Hellmann, & Zehetleitner, 2018), and in dissociations between objective and subjective measures 

of awareness (Ko & Lau, 2012). Focusing on a visual detection task, and specifically on trials in 

which no target was present, we show that beliefs about visibility affect decision times and 

decision criteria of the detection judgments themselves. 

Our novel ideal observer model of perceptual detection, formalized as a POMDP, 

successfully accounts for key signatures of perceptual detection, including an overall bias to 

report absence or presence, and systematic differences in the timing and confidence with which 

decisions about presence and absence are made. Critically, and unlike extant models of 

perceptual decision-making, this is done not by manipulating the observers’ prior belief that a 

target is present (which are assumed to be 0.5 in all our model variants), or by assuming 

suboptimal or biased decision-making, but by formalizing the idea that decisions about presence 

are made once a target is perceived, whereas decisions about absence are made once the subject 

believes that the target would be perceived, if present. In doing so, the model distinguishes 

between two classes of parameters to describe actual visibility and beliefs about visibility, with 

the first set contributing mostly to decisions in the presence of a target, and the second having a 

stronger influence on decisions when a target is absent. With these parameters, the model further 

accounts for reliable heterogeneity in the effect of partial occlusion on individual participants’ 

decisions as revealing differences in metacognitive beliefs about the manipulation, or in the 

tendency to incorporate these beliefs into the perceptual decision making process. 
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Importantly, our model cannot decide between these two equally valid interpretations. 

Indeed, knowing that occlusion affects stimulus visibility is a precondition for rationally 

incorporating this knowledge into the decision-making process. While inaccurate meta-perceptual 

knowledge about occlusion may seem like an unlikely account, an increase in the effect of 

occlusion on the false alarm rate between Exp. 2 and 3 indicates that having direct access to the 

effects of occlusion on stimulus visibility does facilitate the reliance on expected visibility in 

perception. Importantly, however, the fact that target-absent decision times in Exp. 3 were subject 

to the same population variability, with some participants making reliably faster decisions about 

absence when more of the display was occluded, suggest that incomplete meta-perceptual 

knowledge cannot be the full explanation. Relatedly, while our full model accounted for the 

group null effect of occlusion on target-absent decision times, it predicted a similar group-level 

averaging-out of the effect of occlusion on the false alarm rates. This suggests that factors other 

than the ones included in our model may underlie some population variability in decision times. 

One such factor is variability in the shape, rather than the steepness, of the temporal discounting 

curve. It is conceivable that variability in the temporal planning horizon, or in the degree to 

which value is discounted hyperbolically rather than exponentially, may underlie some variability 

in the effect of occlusion on target-absent reaction times. For example, an impatient, hyperbolic 

discounter may be less likely to wait to accumulate more evidence when the expected rate of 

evidence accumulation is low, exactly because they know that a target is less likely to be 

perceived, if present. 

Our findings fit with inferential, “inverse optics” accounts of perception, according to 

which vision is the inversion of an internal generative model of how world states translate to 

perceptual states, in light of noisy sensory data (Alhazen & Smith, 2001; Friston, 2010; 

Gershman et al., 2012; Helmholtz, 1866). Given our participants’ overall successful incorporation 
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of beliefs about occlusion into perceptual decisions, previous reports of a failure to adjust a 

detection criterion as a function of expected visibility are more likely to reflect limited meta-

perceptual knowledge (for example, of the lower vision acuity in the visual periphery, Solovey, 

Graney, & Lau, 2015), or a limited ability to use recently acquired knowledge in a flexible 

manner (Gorea & Sagi, 2000), rather than a blanket inability to incorporate beliefs about the 

perceptual evidence-generating model into perceptual decisions. 

Our new model raises some questions for the ways in which perceptual detection decisions 

are typically modelled and conceptualized. Drift diffusion models, for example, often conceive of 

presence and absence evidence accumulation as a symmetric process, where evidence is similarly 

accumulated for the two options (Gold & Shadlen, 2001; Ratcliff & McKoon, 2008; Ratcliff, 

Smith, Brown, & McKoon, 2016). Moreover, the parameters of such models— the drift rate, 

starting point bias and the boundary separation, do not explicitly correspond to the agent’s beliefs 

and preferences, but to the nuts and bolts of the decision-making process (which can be linked to 

beliefs and desires, assuming optimal decision-making, Moran, 2015). Our ideal observer model 

provides such a description in terms of the subject’s beliefs and goals, allowing for a separation 

between the perceptual likelihood function and the agents’ beliefs about this function. Our 

findings suggest that these beliefs must be incorporated into models of perceptual decisions, and 

that they affect not only participants’ decision threshold, but also the interpretation of incoming 

evidence. We provide a model and accompanying code which makes explicit the separation 

between perceptual input and its interpretation, with the hope that it can prove useful in 

modelling of perceptual tasks more broadly. 

Casting perceptual decisions as the result of optimal decision-making in a partially 

observed environment is a promising avenue for future research. This approach opens up 
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opportunities to precisely quantify aspects of perceptual decisions which were beyond our focus 

here. For example, while in our model the probability of sensor activation was a function of 

target presence and occlusion level alone, future work may seek to identify a mapping between 

sensor activation probabilities and fluctuations in stimulus contrast or noise levels. Furthermore, 

manipulations of prior beliefs about the probability of target presence (for example, using cuing 

or base-rate paradigms) can be modelled directly as the agent’s beliefs about the external 

environment. Decision time profiles may be better accounted for by modelling temporal 

discounting using a hyperbolic, or a finite-horizon function – an approach which proved useful in 

the modelling of planning outside perception (Ainslie, 2017). Finally, the number of sensors and 

their sensitivity profiles can be allowed to vary, capturing settings in which evidence for one 

perceptual category is less informative than for the other, rather than fully missing. 

We see this work as establishing that many—but possibly not all—individuals use beliefs 

about expected visibility to inform their perceptual decisions, and that traces of these beliefs can 

be identified in the way detection decisions are made, especially in the absence of a target. For 

our purpose here, we used the most obvious visibility manipulation that we could think of: partial 

stimulus occlusion. A promising direction for future research would be to use target-absent trials 

to infer what people know and believe about their own perception. For example, it may turn out 

that some manipulations affect visibility without affecting expected visibility, or vice versa: 

affecting expected visibility with no real effect on visibility. This way, inferences in the absence 

of a target can provide a window into implicit metacognitive knowledge about perception 

(Mazor, 2021). 

Finally, we find robust individual differences in the way individuals made inferences 

based on the absence of perceptual evidence, with a subset of participants who systematically 
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speed up, and make more “target-absent” judgments, with higher levels of occlusion. One 

possibility is that these participants committed less effort, adopting the rule-based IGNORE 

policy instead of the more effortful INCORP policy. While a low-effort account may explain the 

behaviour of some participants, a null correlation between task accuracy and IGNORE-like 

reaction time patterns makes a pure effort-based explanation less likely. An alternative is that 

instead of reporting their best guess regarding the objective presence of a letter behind the 

occluders, some participants reported the subjective presence of a percept of a letter as 

experienced from their perspective. Indeed, if the task is to report whether a target is seen rather 

than whether a target is present, high occlusion should make target-absent decisions very easy. In 

our instructions we tried to encourage an “external reality” reading, asking participants to “ignore 

the black lines, focus on the noise that is behind it, and determine whether the letter appeared in it 

or not”. Furthermore, trial-wise feedback about objective accuracy throughout the whole 

experiment was included to indicate to participants that it is the state of the world, not their 

subjective percept, that they are asked about. Still, some participants may have reported their 

subjective experience rather than their best guess of the objective reality. Interestingly, according 

to this interpretation, only participants who attempted to answer a question about the external 

world needed to “invert optics” and take their beliefs about their own perception into account. 

The IGNORE policy, on the other hand, is perfectly consistent with reporting what one 

subjectively perceives. 

Two additional accounts of this individual variability identify its origins in broader 

principles of cognition and perception: counterfactual reasoning and probabilistic perceptual 

inference. First, being able to reach a conclusion early based on the absence of expected evidence 

is a form of counterfactual reasoning: “I would have seen the target by now if it was present”. A 

tendency to consider counterfactuals in perceptual inferences may be a specific instance of a 
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domain-general individual tendency to consider counterfactuals more broadly, for example, in 

making inferences based on vignettes (Byrne & Tasso, 1999), or from the absence of evidence 

(Hsu, Horng, Griffiths, & Chater, 2017). And second, the incorporation of beliefs about the 

perceptual likelihood function may covary with susceptibility to other effects of beliefs on 

perception, for example in cue-stimulus conditioning (Kok et al., 2013; Powers et al., 2017; Press 

et al., 2020b), suggesting that beliefs about the likelihood and content of sensations are mediated 

by similar mechanisms. In both cases, robust individual variability raises the question of whether 

a failure to incorporate meta-perceptual beliefs is always maladaptive, or can sometimes be 

rational, for example in settings where the mapping from world states to sensory input is 

unpredictable or unstable. We are eager to find out the answers to this and similar questions as 

future research will elucidate the theoretical significance of these individual differences. 

Conclusion 

Overall, analysis of decision criteria, reaction times and decision confidence, followed by 

a more focused examination of individual differences, indicates that people generally take into 

account beliefs about visibility when making perceptual detection judgments and when rating 

their subjective confidence in such decisions. Furthermore, the incorporation of beliefs about 

visibility into perceptual decisions is subject to substantial variability, independent of variability 

in physical visibility itself. This variability is especially evident in decisions when a target is 

absent. Our novel model of perceptual detection fits these data, and provides a useful tool that 

importantly extends current models of perceptual decisions to incorporate beliefs not only about 

the world, but, crucially, about perception itself. 
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Extended Methods 

We report how we determined our sample size, all data exclusions (if any), all 

manipulations, and all measures in the study. Experiments 1, 2, and 3 correspond to Experiments 

3, 4, and 6 of a project looking at the effects of different manipulations on inference about 

absence. Experiments 1, 2, and 5 used a context manipulation, and will be reported separately. 

Experiments 1, 2, and 3 were pre-registered prior to data collection (Exp. 1: osf.io/e6x82, 

Exp. 2: osf.io/5yr9e, Exp. 3: osf.io/mfd2w). The long versions of Experiments 2 and 3 were not 

pre-registered. To ensure pre-registration time-locking (in other words, that pre-registration 

preceded data collection), we employed randomization-based pre-registration. We used the 

SHA256 cryptographic hash function to translate our pre-registered protocol folders (Exp. 1: 

https://github.com/matanmazor/counterfactualVisibility/blob/main/experiments/Exp1pixels/versi

on2/protocolFolder.zip; Exp. 2: 

https://github.com/matanmazor/reverseCorrelation/blob/cbba2d43c2ddfb0c021ee0c15b7d5b03ed

dd34d8/experiments/Experiment2/protocol_folder.zip ; Exp. 3: 

https://github.com/matanmazor/counterfactualVisibility/blob/main/experiments/Exp3reference/pr

otocolFolder.zip) to strings of 256 bits (protocol sums; Exp. 1: 

e420455976659d9a46582ea0f7a64ba9e33810d90786c5157e2a188e8dcdd7c0; Exp. 2: 

bf72004d226b7a89a2085b0d6238a8d9b9c638513127a47fd44c6a7d00112b2f; Exp. 3: 

2be4e2548db0a221a06c936fbba47cecd28894e0400477ac4f580222b77a4a44). These bits were 

then combined with the unique identifiers of single subjects, and the resulting string was used as 

seed for initializing the Mersenne Twister pseudorandom number generator prior to determining 

the order and timing of experimental events. This way, experimental randomization was causally 

https://osf.io/e6x82
https://osf.io/5yr9e
https://osf.io/mfd2w
https://github.com/matanmazor/counterfactualVisibility/blob/main/experiments/Exp1pixels/version2/protocolFolder.zip
https://github.com/matanmazor/counterfactualVisibility/blob/main/experiments/Exp1pixels/version2/protocolFolder.zip
https://github.com/matanmazor/reverseCorrelation/blob/cbba2d43c2ddfb0c021ee0c15b7d5b03eddd34d8/experiments/Experiment2/protocol_folder.zip
https://github.com/matanmazor/reverseCorrelation/blob/cbba2d43c2ddfb0c021ee0c15b7d5b03eddd34d8/experiments/Experiment2/protocol_folder.zip
https://github.com/matanmazor/counterfactualVisibility/blob/main/experiments/Exp3reference/protocolFolder.zip
https://github.com/matanmazor/counterfactualVisibility/blob/main/experiments/Exp3reference/protocolFolder.zip
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dependent on, and therefore could not have been determined prior to, the specific contents of our 

pre-registration document. (Mazor, Mazor, & Mukamel, 2019). 

Participants 

The research complied with all relevant ethical regulations, and was approved by the 

Research Ethics Committee of Birkbeck, University of London (study ID number 1812000). In 

all experiments, participants were recruited via Prolific, and gave informed consent prior to their 

participation. To be eligible to take part, their Prolific approval rate had to be 95% or higher, their 

reported first language English, and their age between 18 and 60. Our pre-registered plan was to 

collect data until we reach 250, 210 and 250 participants for Exp. 1, 2, and 3, respectively. Due to 

an error in the pre-processing script, we ultimately collected data from 234 included participants 

(after applying our pre-registered exclusion criteria) in Exp. 2. We opted to keep the additional 

participants, noting that their inclusion does not change the pattern of the results. The 

experiments took ~12 minutes to complete, and participants were paid according to an hourly 

wage of £7.50. 

For the long versions of Exp. 2 and 3, we contacted all participants who had accuracy of 

70% or higher, and who did not require more than one iteration over the instructions before 

passing the comprehension check. The first 10 participants from each study to accept our 

invitation were invited to take part in 5 20-minute experiments, which they could complete in 

their own free time. 

Procedure 

Participants detected the presence or absence of a target letter (S or A, in different blocks) 

in a patch of dynamic grayscale noise presented at 15 frames per second. In each frame, noise 
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was generated by randomly sampling grayscale values from a target image 𝐼. Specifically, for 

each pixel 𝑆𝑖𝑗 , we displayed the grayscale value for the corresponding pixel in the original, noise-

free, image 𝐼𝑖𝑗 with some probability 𝑝, and the grayscale value of a randomly chosen pixel 𝐼𝑖′𝑗′ 

(sampled with replacement) with probability 1 − 𝑝. On target-absent trials, 𝑝 was set to 0, such 

that grayscale values of all pixels were randomly shuffled, with replacement. On target-present 

trials, the probability 𝑝 was set to a positive number between 0 and 1. In Exp. 1 and 2, 𝑝 was 

calibrated online to achieve performance levels of around 80%, following a 1-up-3-down 

procedure, starting at 𝑣 = 0.35 and following a multiplicative set size of 0.9, which moved closer 

to 1 following each change direction in the calibration process. In Exp. 3, 𝑝 was set to 0.3 

throughout the entire experiment. Responses were delivered using the F and G keyboard keys 

(counterbalancing response mapping across subjects). 

After reading the instructions, participants completed four practice trials. In case their 

accuracy in these four practice trials fell below 3/4, they were reminded of task instructions and 

given additional practice trials, until reaching the desired accuracy level. Otherwise, they 

continued to the main part of the experiment. Here, their task was exactly the same, but the noise 

patch was partly occluded. In Exp. 1, occluders were randomly positioned static black pixels, 

which covered 5% or 15% of the stimulus on different trials. In Exp. 2 and 3, occluders were 

randomly positioned rows of black pixels (2 or 6 rows, on different trials) which extended 

beyond the stimulus. In order to make clear that the occluders are not part of the main stimulus, 

occluder rows in Exp. 2 and 3 preceded the main stimulus by 500 ms. Finally, in Exp. 3, two 

similar “reference” stimuli were presented on both sides of the central stimulus. In these 

reference stimuli, the target letter was always presented with 𝑝 = 0.3 regardless of the presence 

of a letter in the central stimulus. Participants were explained that they should respond based on 
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the central stimulus only, and continued to the main part of the experiment only once they had 

passed a comprehension check. 

The main part of the experiment comprised four blocks of 16 trials. For approximately 

half of the participants, in blocks 1 and 2 the target letter was S and in blocks 3 and 4 it was A. 

The order of letters was reversed for the other half. In blocks 3 and 4 of Exp. 2, participants used 

their mouse to rate their confidence on a vertical analog scale immediately after deciding whether 

the letter was present or absent. To move on to the third block, participants had to respond 

correctly on at least 3 out of 4 trials, and to correctly answer a multiple-option comprehension 

question about the use of the confidence scale. 

Finally, at the end of Exp. 2, participants were asked to report whether occlusion affected 

how difficult it was to detect the letter. 197 participants reported that occluding more of the 

stimulus made detecting the target letter harder, 5 reported it made detecting the target letter 

easier, and the remaining 32 reported it had no effect on difficulty. 

Statistical analysis 

All statistical tests were tested using the standard 0.05 significance threshold. Bayes 

Factors, when reported, assume a non-informative Cauchy prior (scale factor =0.707) over effect 

sizes, equivalent to a belief that an effect, when present, is similarly likely to be greater or smaller 

than 0.707 standard deviations. 

Data exclusion 

We followed our pre-registered exclusion criteria. Participants were excluded if their 

accuracy fell below 50%, and for having extremely fast or slow reaction times in more than 25% 

of the trials. Too fast reaction times were defines as below 100 milliseconds in all experiments. 
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Too slow reaction times were defined as above 5 seconds in Exp. 1 and 2, and above 7 seconds in 

Exp. 3 and in the long versions of Exp. 2 and 3. 

Trials with too slow or too fast response times according to the above criteria were 

excluded from the response time analysis. 

Reverse correlation analysis 

For each individual frame, we computed the correlation between pixel luminance values 

and the corresponding values in the target image. Occluded pixels were omitted from both 

stimulus and target image. This resulted in an uncorrected stimulus-target similarity metric, 

which was naturally higher for frames from target-present trials, and for frames with higher levels 

of stimulus visibility (𝑝, see Procedure subsection). We therefore mean-centered these correlation 

values as a function of stimulus presence, occlusion and 𝑝, to obtain an unbiased measure of 

stimulus-target similarity 𝑟. 

For each individual subject, we averaged these frame-wise correlations across frames 1-5, 

roughly corresponding to the first 300 ms of the trial. We then extracted, for each participant, the 

Spearman correlation between these average values and trial-wise reaction times. This was done 

separately for target-present and target-absent trials. These subject-level correlations were then 

subjected to a group-level t-test. 

In Exp. 2, a similar procedure was used to reveal correlations between stimulus-target 

similarity and subjective confidence. For each participant, we extracted the Spearman correlation 

between trial-wise values of 𝑟, averaged across frames 1-5, and trial-wise confidence ratings, 

separately for target-present and target-absent trials. We then subjected the resulting correlations 

to a group-level t-test. 
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Model simulations 

Model specification 

A POMDP is a 7-tuple: < 𝒮, 𝒜, 𝒯, 𝛺, 𝒪, 𝓇, 𝛾 >. The state space 𝒮 comprises two states 

describing target presence or absence and two additional states for trial endings: correct and 

incorrect. The action space 𝒜 has three possible actions: “wait”, “decide present”, and “decide 

absent”. The transition function 𝒯: (𝒮, 𝒜) → 𝒮 specifies the effect of actions on state transitions. 

“wait” maps states to themselves, and deciding maps states to the terminal “correct” or 

“incorrect” states depending on the accuracy of the decision, which have no associated actions 

with them. 𝛺 is the set of possible observations. We assume these are [0,1], that is, perceptual 

evidence has a binary form. 𝒪: 𝒮 → 𝑃(𝛺) is a probabilistic function from states to observations, 

which we describe in more detail below. 𝓇: 𝒮 → 𝑅 maps states to reward values. We set the 

values of all states to 0, except “correct” which is associated with a value of 1. Finally, the 

temporal discount factor 𝛾 affects the subjective value of anticipated rewards. We set 𝛾 : = 0.99, 

meaning that a reward obtained in the next time point is worth 0.99 of its worth if obtained now. 

The observation function 𝒪 is a Bernoulli function, such that the probability of observing 

1 equals the bias parameter 𝜃 which depends on target presence. Specifically, we set 

𝜃 ≔ {
0.05 absent

0.2 present
(1) 

Importantly, for any choice of 𝜃 such that 0 < 𝜃𝑎𝑏𝑠𝑒𝑛𝑡 < 𝜃𝑝𝑟𝑒𝑠𝑒𝑛𝑡 < 0.5, positive 

evidence (that is, sampling a 1) is more informative than negative evidence (that is, sampling a 

0). For example, for the values we use here, after sampling a 0 an agent should update their 
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subjective belief that a target is present only by a small amount, from 0.5 to 0.46. In contrast, 

after sampling a single 1, belief update is much steeper: from 0.5 to 0.8. 

Agents need to infer target presence from noisy observations. Their belief state can 

therefore be described as the log likelihood ratio 𝐿𝐿𝑅 between target presence and absence, 

which they update following each sample. 

𝐿𝐿𝑅𝑡 = ∑𝑖=1
𝑡 𝑙𝑜𝑔

𝑝(𝑜𝑖|𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒)

𝑝(𝑜𝑖|𝜃‾ 𝑎𝑏𝑠𝑒𝑛𝑐𝑒)
 (2)

Where 

𝑝(𝑜𝑖|𝜃‾) = {
𝜃‾ if 𝑜𝑖 = 1

1 − 𝜃‾ if 𝑜𝑖 = 0
(3) 

With 𝜃‾ being the assumed value of 𝜃 in the agent’s internal model of their perception (in 

all our simulations, 𝜃‾ = 𝜃). The probability that a target is present given the evidence so far is 

then: 

𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡|𝑂𝑡) =
𝑒𝐿𝐿𝑅𝑡

1 + 𝑒𝐿𝐿𝑅𝑡
 (4) 

 

With 𝑂𝑡 being the entire stream of evidence until time point t. And, assuming that, at the 

time of committing to a decision, the agent decides “present” if and only if 𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡|𝑂) > 0.5, 

the probability of being correct at that time point is: 

𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝐷𝐸𝐶𝐼𝐷𝐸, 𝑂𝑡) = 𝑚𝑎𝑥(𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡|𝑂𝑡), 1 − 𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡|𝑂𝑡)) (5)

When following the optimal policy, the expected value at time point 𝑡 equals the maximum of 1) 
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the probability of being correct if decision is taken now, and 2), the expected value of waiting and 

collecting additional evidence, discounted by the temporal discount factor 𝛾: 

𝐸(𝑉|𝑂𝑡) = max (𝑝(𝑐𝑜𝑟𝑟𝑒𝑐𝑡|𝑂𝑡),

𝑝(1|𝑂𝑡)𝛾𝐸(𝑉|[𝑂𝑡, 1]) + 𝑝(0|𝑂𝑡)𝛾𝐸(𝑉|[𝑂𝑡, 0]))
(6) 

Where 𝐸(𝑉|[𝑂𝑡, 1]) is the expected value at time point 𝑡 + 1, assuming the next sample is 

1, and 𝑝(1|𝑂𝑡) = 𝑝(𝑝𝑟𝑒𝑠𝑒𝑛𝑡|𝑂𝑡)𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡 + 𝑝(𝑎𝑏𝑠𝑒𝑛𝑡|𝑂𝑡)𝜃‾𝑎𝑏𝑠𝑒𝑛𝑡 is the probability that the next 

sample will be 1, marginalized over target presence and absence (similar for 0). The optimal 

action at time t is determined by the maximizing term (deciding now or waiting). 

Finally, confidence ratings are modeled as the estimated probability of being correct when 

committing to a decision. 

Occlusion effects 

We simulate stimulus occlusion as a scaling of the probability of obtaining positive 

evidence by a parameter 𝛼 ∈ [0,1]. Similar to 𝜃𝑝𝑟𝑒𝑠𝑒𝑛𝑡  and 𝜃𝑎𝑏𝑠𝑒𝑛𝑡 , 𝛼 is paralleled by a 

metacognitive variable, 𝛼‾, which corresponds to participants’ beliefs about the the effects of 

occlusion on stimulus visibility. This way of defining occlusion has three notable characteristics. 

First, the relative effect of occlusion on the probability of sampling a 1 (𝛼) is much more 

pronounced than its positive effect on the probability of sampling a 0 (
1−𝛼𝜃

1−𝜃
). For example, for the 

case of 𝜃 = 0.1 and 𝛼 = 0.7, occlusion reduces the probability of sampling a 1 by a factor of 

1.43, but increases the probability of sampling a 0 by a factor of 1.03 only. 
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Second, the informativeness of obtaining positive evidence, quantified as the log 

likelihood ratio between target presence and absence following a 1, is unaffected by beliefs about 

the effects of occlusion on visibility, 𝛼‾: 

𝐿𝐿𝑅[1] = 𝑙𝑜𝑔
𝑝(1|𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

𝑝(1|𝑎𝑏𝑠𝑒𝑛𝑡)
= 𝑙𝑜𝑔

𝛼‾ 𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝛼‾ 𝜃‾ 𝑎𝑏𝑠𝑒𝑛𝑡
= 𝑙𝑜𝑔

𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝜃‾ 𝑎𝑏𝑠𝑒𝑛𝑡
 (7)

And third, the informativeness of obtaining negative evidence, quantified as the log likelihood 

ratio between target presence and absence following a 0, approaches 0 with lower values of 𝛼‾, as 

if the model considers the probability that evidence would have been obtained if a target was 

present: 

|𝐿𝐿𝑅[0]| = |𝑙𝑜𝑔
𝑝(0|𝑝𝑟𝑒𝑠𝑒𝑛𝑡)

𝑝(0|𝑎𝑏𝑠𝑒𝑛𝑡)
| =

|𝑙𝑜𝑔
1 − 𝛼‾𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡

1 − 𝛼‾𝜃‾𝑎𝑏𝑠𝑒𝑛𝑡

| < |𝑙𝑜𝑔
1 − 𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡

1 − 𝜃‾𝑎𝑏𝑠𝑒𝑛𝑡

|

 (8) 

 

Together, we get a double dissociation. Occlusion affects the probability of obtaining 

positive evidence, but beliefs about occlusion have no effect on the interpretation of such 

evidence once obtained. On the other hand, occlusion has little effect on the probability of 

obtaining negative evidence, but beliefs about the effects of occlusion affect the interpretation of 

such evidence once obtained. As a result, timing and confidence in decisions about absence 

depend much more on beliefs about the effect of occlusion than on the true effect of occlusion on 

visibility. 

In the simulations we had two occlusion levels; one where 𝛼 = 0.8 (easy condition) and 

one where 𝛼 = 0.0.6 (hard condition). We present the results of two simulated agents: 𝑉𝐼𝑁𝐶𝑂𝑅𝑃  is 
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an ideal observer who uses information about the expected effect of occlusion on visibility to 

interpret data and make decisions (𝛼‾ = 𝛼), and 𝑉𝐼𝐺𝑁𝑂𝑅𝐸  is an observer who interprets perceptual 

evidence similarly in both levels of occlusion (𝛼‾ = 0.7 for both hard and easy conditions). To 

find the optimal policy (the one that maximises the Bellman equation), we used backwards 

induction with a horizon of 100 time points (Callaway, Griffiths, Norman, & Zhang, 2023; 

Puterman, 2014). We then simulated 4000 trials to obtain predictions for a rational decision-

maker, for each agent separately. 

Model fitting 

Model parameters were fitted to the behaviour of individual participants. 10 model 

parameters were included: 

1. 𝜃𝑎𝑏𝑠𝑒𝑛𝑡 = 𝑝(1|𝑎𝑏𝑠𝑒𝑛𝑡) 

2. 𝜃𝛥 = 𝑝(1|𝑝𝑟𝑒𝑠𝑒𝑛𝑡) − 𝑝(1|𝑎𝑏𝑠𝑒𝑛𝑡) 

3. 𝜃‾𝑎𝑏𝑠𝑒𝑛𝑡 

4. 𝜃‾𝛥 

Parameters 1-4 were allowed to vary between 0.00005 and 0.27. 

5. 𝛾: the temporal discounting parameter. Allowed to vary between 0.989 and 0.999955. 

6. Minimal non-decision time. Allowed to vary between 0.2 and 1 second. 

7. Maximal non-decision time minus minimal non-decision time. Allowed to vary between 

0.1 and 1 second. 

8. 𝛼: the effect of occlusion on visibility. For model-fitting purposes, 𝑝(1) in the easy 

condition was set to 𝜃/𝛼 and in the hard condition 𝜃𝛼. 

9. 𝛼‾: the believed effect of occlusion on visibility. For model-fitting purposes, here 𝑝‾(1) in 

the easy condition was 𝜃‾/𝛼‾  and in the hard condition 𝜃‾𝛼‾. 

Parameters 8 and 9 were allowed to vary between 0.67 and 1. 



BELIEFS ABOUT PERCEPTION SHAPE PERCEPTUAL INFERENCE 
51 

To account for noise in the decision-making process, action selection followed a softmax 

distribution: 

𝑝(𝑎) =
𝑒𝑥𝑝 (

𝑣𝑎

𝑇 )

𝛴𝑎𝑒𝑥𝑝 (
𝑣𝑎

𝑇 )
 (9) 

where 𝑣𝑎 is the value associated with taking action 𝑎 and 𝑇 is the softmax temperature: 

10. 𝑇. Allowed to vary between 0.0015 and 1. Notably, the model fits of most participants 

converged to the lowest possible value for 𝑇, indicating very little decision noise. 

To aid with model fitting, parameters 1-5 were fitted in logit space and then transformed 

via a sigmoid function and parameters 8-10 were fitted in log space and then exponentiated. 

Model fitting was carried out in Matlab (version R2023a, Optimization Toolbox). We 

used a combination of simulated annealing (Matlab’s simannealbnd) and the nonlinear 

programming solver fmincon. For Exp. 1,2 and 3, we ran 12 independent optimizations per 

participant, starting at random points in the parameter space, and used the parameters that 

produced the best fits in terms of log likelihood. For the long experiments 2a and 2b, we ran 48 

independent optimizations per participants. The authors would like to acknowledge the use of the 

University of Oxford Advanced Research Computing (ARC) facility in carrying out this work. 

http://dx.doi.org/10.5281/zenodo.22558 

Model variants 

In addition to fitting the model as described, we fitted three additional model variants: 

In this version, 𝛼‾ was set to 1. 

In this version, 𝛼‾ was set to be equal to 𝛼 

An IGNORE variant. 

An INCORP variant. 

http://dx.doi.org/10.5281/zenodo.22558
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In this version, the agent had access to two sensors, 𝑃 and 𝐴, 

that are symmetricaly tuned to the presence or absence of a target. As a result, momentary 

evidence Individual observations were now pairs of values [𝑜𝑃 , 𝑜𝐴]: [1,1], [0,0], [1,0] or [0,1]. 

That is, the probability of the presence sensor to activate when a target was present, 𝜃𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝑃 , was 

identical to the probability of the absence sensor to activate when no target is present 𝜃𝑎𝑏𝑠𝑒𝑛𝑡
𝐴 . 

Similarly, 𝜃𝑎𝑏𝑠𝑒𝑛𝑡
𝑃 = 𝜃𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝐴 . The observers’ beliefs were symmetric in the same way: 

𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝑃 = 𝜃‾𝑎𝑏𝑠𝑒𝑛𝑡

𝐴  and 𝜃‾𝑎𝑏𝑠𝑒𝑛𝑡
𝑃 = 𝜃‾𝑝𝑟𝑒𝑠𝑒𝑛𝑡

𝐴 . This is an implementation of the neuron-antineuron 

architecture, described in Gold and Shadlen (2001) as an alternative to likelihood-based 

inference. More practically, the first four parameters in the original model were replaced with the 

following parameters: 

1. 𝜃𝑢𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 = 𝑝(𝑜𝑃 = 1|𝑎𝑏𝑠𝑒𝑛𝑡) = 𝑝(𝑜𝐴 = 1|𝑝𝑟𝑒𝑠𝑒𝑛𝑡) 

2. 𝜃𝛥 = 𝑝(1|𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑) − 𝑝(1|𝑢𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑) 

3. 𝜃‾𝑢𝑛𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑  

4. 𝜃‾𝛥 

Where 𝜃𝑝𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 = 𝑝(𝑜𝐴 = 1|𝑎𝑏𝑠𝑒𝑛𝑡) = 𝑝(𝑜𝑃 = 1|𝑝𝑟𝑒𝑠𝑒𝑛𝑡). The agent updates their 

beliefs and determines the optimal policy given these observations, and using the same procedure 

used in the asymmetric model. 
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Appendix 

Pre-registered analysis 

Probability correct was 0.81 (SD=0.04) in Exp. 1, 0.81 (SD=0.03), and 0.82 (SD=0.10) in 

Exp. 3. 

A paired t-test on the median individual level-response times revealed a significant 

difference between target-present and target-absent response times (𝑀 = 454.16, 95% CI 

[402.75,505.58], 𝑡(250) = 17.40, 𝑝 < .001). 

A paired t-test on the median individual level-response times revealed a 

significant difference between target-present and target-absent response times (𝑀 = 384.93, 

95% CI [337.23,432.62], 𝑡(233) = 15.90, 𝑝 < .001). 

A paired t-test on the median individual level-response times revealed a 

significant difference between target-present and target-absent response times (𝑀 = 581.37, 

95% CI [503.16,659.58], 𝑡(248) = 14.64, 𝑝 < .001). 

A paired t-test on the median individual level-response times in hit trials revealed a 

significant effect of occlusion on RT (𝑀 = −65.95, 95% CI [−102.95, −28.95], 𝑡(250) =

−3.51, 𝑝 < .001). 

A paired t-test on the median individual level-response times in hit trials 

revealed a significant effect of occlusion on RT (𝑀 = −134.34, 95% CI [−185.95, −82.73], 

𝑡(233) = −5.13, 𝑝 < .001). 

Hypothesis 1 (PRESENCE/ABSENCE RESPONSE TIME). 

Exp. 1. 

Exp. 2. 

Exp. 3. 

Hypothesis 2 (OCCLUSION EFFECT IN PRESENCE). 

Exp. 1. 

Exp. 2. 
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A paired t-test on the median individual level-response times in hit trials 

revealed a significant effect of occlusion on RT (𝑀 = −101.04, 95% CI [−139.35, −62.73], 

𝑡(248) = −5.19, 𝑝 < .001). 

A paired t-test on the median individual level-response times in correct rejection trials 

revealed no significant effect of occlusion on RT (𝑀 = 5.88, 95% CI [−32.81,44.56], 𝑡(250) =

0.30, 𝑝 = .765). 

A paired t-test on the median individual level-response times in correct 

rejection trials revealed no significant effect of occlusion on RT (𝑀 = 15.03, 95% CI 

[−22.34,52.40], 𝑡(233) = 0.79, 𝑝 = .429). 

A paired t-test on the median individual level-response times in correct 

rejection trials revealed no significant effect of occlusion on RT (𝑀 = 19.65, 95% CI 

[−37.33,76.63], 𝑡(248) = 0.68, 𝑝 = .498). 

We find a significant interaction between occlusion level and response on reaction times 

(𝑀 = −71.82, 95% CI [−127.16, −16.48], 𝑡(250) = −2.56, 𝑝 = .011). 

We find a significant interaction between occlusion level and response on 

reaction times (𝑀 = −149.37, 95% CI [−212.21, −86.53], 𝑡(233) = −4.68, 𝑝 < .001). 

We find a significant interaction between occlusion level and response on 

reaction times (𝑀 = −120.69, 95% CI [−189.53, −51.85], 𝑡(248) = −3.45, 𝑝 < .001). 

Exp. 3. 

Hypothesis 3 (OCCLUSION EFFECT IN ABSENCE). 

Exp. 1. 

Exp. 2. 

Exp. 3. 

Hypothesis 4 (OCCLUSION RESPONSE INTERACTION). 

Exp. 1. 

Exp. 2. 

Exp. 3. 
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We find a significant drop in perceptual sensitivity (𝑑′) as a function of occlusion (𝑀 =

0.37, 95% CI [0.27,0.46], 𝑡(250) = 7.64, 𝑝 < .001). 

We find a significant drop in perceptual sensitivity (𝑑′) as a function of 

occlusion (𝑀 = 0.51, 95% CI [0.42,0.61], 𝑡(233) = 10.46, 𝑝 < .001). 

We find a significant drop in perceptual sensitivity (𝑑′) as a function of 

occlusion (𝑀 = 0.58, 95% CI [0.50,0.67], 𝑡(248) = 13.64, 𝑝 < .001). 

We find a significant increase in the signal detection criterion (𝑐) as a function of 

occlusion (𝑀 = −0.14, 95% CI [−0.19, −0.09], 𝑡(250) = −5.46, 𝑝 < .001). 

We find a significant increase in the signal detection criterion (𝑐) as a 

function of occlusion (𝑀 = −0.15, 95% CI [−0.21, −0.10], 𝑡(233) = −5.85, 𝑝 < .001). 

We find a significant increase in the signal detection criterion (𝑐) as a 

function of occlusion (𝑀 = −0.10, 95% CI [−0.15, −0.05], 𝑡(248) = −4.02, 𝑝 < .001). 

A paired t-test on the mean individual-level confidence ratings from correct responses 

only revealed a significant effect of target presence on confidence (𝑀 = −0.01, 95% CI 

[−0.03,0.00], 𝑡(233) = −2.92, 𝑝 = .004). 

Hypothesis 5 (SENSITIVITY). 

Exp. 1. 

Exp. 2. 

Exp. 3. 

Hypothesis 5 (CRITERION). 

Exp. 1. 

Exp. 2. 

Exp. 3. 

Hypothesis 7 (PRESENCE/ABSENCE CONFIDENCE). 

Exp. 2. 

Hypothesis 8 (OCCLUSION CONFIDENCE EFFECT IN PRESENCE). 

Exp. 2. 
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A paired t-test on the mean individual-level confidence ratings in correct trials only 

revealed a significant effect of occlusion on hit reaction times (𝑀 = 0.04, 95% CI [0.03,0.05], 

𝑡(233) = 9.87, 𝑝 < .001). 

A paired t-test on the mean individual-level confidence ratings in correct trials only 

revealed a significant effect of occlusion on correct-rejection reaction times (𝑀 = 0.04, 95% CI 

[0.03,0.05], 𝑡(233) = 10.54, 𝑝 < .001). 

We find no significant interaction effect between occlusion and target presence on 

confidence (𝑀 = 0.00, 95% CI [−0.01,0.01], 𝑡(233) = 0.01, 𝑝 = .992) 

  

Hypothesis 9 (OCCLUSION CONFIDENCE EFFECT IN ABSENCE). 

Exp. 2. 

Hypothesis 10 (OCCLUSION RESPONSE INTERACTION ON CONFIDENCE). 

Exp. 2. 
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Model recovery 

As described in the text, four models were fitted to the data from the two long 

experiments: a full “inverse optics” model where visibility and beliefs about visibility are 

independently free to vary, an “INCORP” model that assumes perfectly accurate beliefs about the 

effect of occlusion on visibility, an “IGNORE” model that assumes no knowledge about the 

effect of occlusion on visibility, and a symmetric model that is equipped with an absence sensor 

in addition to a presence sensor. We used the best fitting parameters from each model to simulate 

896 trials per participant, and then fitted the four models to the resulting simulated data, 

excluding 3 participants whose best-fitting parameters in the full model were consistent with the 

IGNORE variant (𝛼‾ = 1). This procedure ensured that above-chance model-recovery is not 

driven by a choice of unrealistic model parameters. 

The resulting confusion matrix shows minimal confusion between the symmetric and the 

full model variants, and between the IGNORE and INCORP variants in particular. 
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Figure A1: Model recovery results, Exp. 2 and Exp. 3 (long versions). Confusion matrix between the four 

model variants. Data were generated using the parameters fitted to the 17 participants from , Exp. 2 and 3 

(long versions) whose fitted parameters varied between all four model variants. We then fitted the same 

four model variants to the generated data, and recorded the best-fitting model as decided with AIC. 
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Parameter recovery 

Figure A2: Parameter recovery results, Exp. 2 and Exp. 3 (long versions). 

To verify that model-parameters are in principle recoverable, we used the parameters 

fitted to participants in the long version of Exp. 2 and 3 and simulated 896 trials per participant. 

We then repeated the same model-fitting procedure on these recovered parameters. The 

correlations between fitted and recovered parameters were generally very high for the parameters 

of interest (see Fig. 9). Most importantly for our purpose, the difference between 𝛼 and 𝛼, 

indicating whether participants overestimated, underestimated, or accurately estimated the effect 

of occlusion on target visibility, was highly recoverable (𝑟 = .93, 95% CI [. 84, .97], 𝑡(18) =

11.10, 𝑝 < .001). Furthermore, the intercept term in a linear regression model fitted to predict 

the recovered 𝛼‾ − 𝛼 from the true 𝛼‾ − 𝛼 was not statistically different from 0 (𝑡(18) = −0.30, 

𝑝 = .768), suggesting that this term was recovered not only with high precision, but also with 

minimal bias. 
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We repeated the same exercise, this time using parameters from the short version of Exp. 

2 and stimulating 72 trials per participant. Due to the lower number of simulated trials, the 

correlations here were lower. Still, 𝛼‾ − 𝛼 was recoverable well above chance (𝑟 = .62, 95% CI 

[. 54, .69], 𝑡(232) = 12.08, 𝑝 < .001). Again, the model intercept was not significantly different 

from 0 (𝑡(232) = 1.64, 𝑝 = .102), suggesting that the relationship between 𝛼 and 𝛼‾ can be 

recovered without introducing a bias. 
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Parameter values 

Figure A3: Parameter value distributions across the three experiments. True and believed effects of 

occlusion on visibility were strongly correlated, but participants’ beliefs tended to underestimate the true 

effect of occlusion on visibility, with values closer to 1. 
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Within-condition variability 

Figure A4: Association between decision and and decision accuracy in human and artificial data. Solid 

lines represent correct responses, dahsed lines are incorrect responses. Panel A: the standard model, as 

presented in the main text. Panel B: the extended model, with inter-trial variability. 

In our experiments, incorrect responses were generally slower than correct responses. This 

was true both for “target present” responses (difference in seconds between false alarm and hit 

trials; Exp. 1: 𝑀 = 0.33, 95% CI [0.26,0.39], Exp. 2: 𝑀 = 0.31, 95% CI [0.23,0.38], Exp. 3: 

𝑀 = 0.39, 95% CI [0.32,0.47]), and for “target absent” responses (difference in seconds 
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between miss and correct rejection trials; Exp. 1: 𝑀 = 0.31, 95% CI [0.24,0.37], Exp. 2: 𝑀 =

0.37, 95% CI [0.31,0.43], Exp. 3: 𝑀 = 0.27, 95% CI [0.20,0.35]). 

As presented in the main text, the model does not consistently account for these effects, 

sometimes even predicting that correct responses should be slower rather than faster than 

incorrect responses (“target present” responses in Exp. 1: 𝑀 = 0.03, 95% CI [0.01,0.05], Exp. 2: 

𝑀 = −0.05, 95% CI [−0.08, −0.03], Exp. 3: 𝑀 = 0.07, 95% CI [0.05,0.08]; “target absent” 

responses: 𝑀 = −0.01, 95% CI [−0.03,0.01], Exp. 2: 𝑀 = 0.06, 95% CI [0.04,0.08], Exp. 3: 

𝑀 = −0.07, 95% CI [−0.09, −0.04]). 

Of note, the presented model assumes that all trials within a condition are of the same 

difficulty (that is, the visibility of the stimulus, and the believed visibility of the stimulus, are 

unchanged across trials). In the context of drift diffusion modelling, assuming that evidence 

accumulation varies between trials can account for slower error trials (Calder-Travis, Charles, 

Bogacz, & Yeung, 2024; Ratcliff & McKoon, 2008). Therefore, to incorporate inter-trial 

variability into our model, we extended the model by assigning a random “difficulty” value 𝑥 to 

each trial, sampled uniformly from 𝑥 ∈ [−2, −1,0,1,2]. Target visibility on a given trial was then 

defined as 𝛼𝜂𝑥𝜃, and beliefs about visibility on a given trial are 𝛼‾𝜂‾𝑥𝜃‾, with both 𝜂 and 𝜂‾ in the 

range of (0,1]. This way, lower values of 𝜃 give rise to more pronounced variability in the true 

visibility of stimuli (with 𝜃 = 1 corresponding to no variability at all), and lower values of 𝜃‾ 

produce higher variability in beliefs about the visibility of stimuli. In this specification of the 

model, visibility and believed visibility are perfectly correlated across trials, but a third parameter 

can be introduced to control the alignment between the two. 

We fitted the extended model to participants’ behaviour in the long version of Exp. 2 and 

3 (given the higher number of free parameters, using the long version ensured we had a 
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reasonable number of data points per free parameter). As can be seen in Fig. 11, the extended 

model successfully accounts for slower error trials both in “target present” and in “target absent” 

responses. Furthermore, inspection of the fitted model parameters suggests that participants 

underestimated the true variability in stimulus visibility across trials in Exp. 2 (𝜂 − 𝜂‾ 𝑡(9) =

−3.39, 𝑝 = .008), but not in Exp. 3, where the expected visibility of stimuli could be directly 

perceived in the reference stimuli (𝑡(9) = −0.31, 𝑝 = .764). 
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Model fits for all model variants 

Figure A5: Empirical data and model predictions for the four model variants, focusing on data from the 

two long experiments. Same conventions as Fig. 6. 
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Reverse correlation of sensor activation sequences 

We used the fitted parameters from the full asymmetric and symmetric models to simulate 

64 trials from the participants who took part in Exp. 2, producing two artificial datasets. 

Critically, we recorded not only trial-wise measures such as decision and response time, but also 

the exact sequence of sensor activation per trial. We then subjected these sequences to a reverse 

correlation analysis, applying the same pre-processing and analysis steps as we did for human 

data. 

Notably, this is reverse correlation over latent internal variables, rather than fluctuations in 

stimulus visibility as is the case for human observers where internal states had to be inferred 

rather than directly observed. While it is reasonable to assume that the probability of sensor 

activation scales with the visibility of the external stimulus, the exact function linking the two can 

take many forms, which can give rise to different predictions. To keep our analysis neutral with 

respect to such assumptions, we opted to run the analysis on the activations themselves. 

Reverse correlation kernels from the asymmetric model showed the same qualitative 

asymmetry found in human data, whereby perceptual evidence contributed more to decision time 

and decision confidence when a target was present. This asymmetry was not observed, however, 

when applied to simulated data from the symmetric model (using the difference between presence 

and absence sensor activations as a measure of perceptual evidence): 
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Figure 13: Reverse correlation kernels from human data (computed over normalized target-stimulus 

similarity measures) and from simulated data (computed over sequences of sensor activations). Only the 

asymmetric model produces an asymmetry between the effect of perceptual evidence on decisions when a 

target is present versus absent. Same conventions as Fig. 3D and Fig. 3E. Significance stars and Bayes 

factors refer to a comparison between target-present and target-absent effects in the first 300 milliseconds 

of the trial. 

 


