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Perceptual reality monitoring refers to the ability to
distinguish internally triggered imagination from
externally triggered reality. Such monitoring can take
place at perceptual or cognitive levels—for example, in
lucid dreaming, perceptual experience feels real but is
accompanied by a cognitive insight that it is not real. We
recently developed a paradigm to reveal perceptual
reality monitoring errors during wakefulness in the
general population, showing that imagined signals can
be erroneously attributed to perception during a
perceptual detection task. In the current study, we set
out to investigate whether people have insight into
perceptual reality monitoring errors by additionally
measuring perceptual confidence. We used hierarchical
Bayesian modeling of confidence criteria to characterize
metacognitive insight into the effects of imagery on
detection. Over two experiments, we found that
confidence criteria moved in tandem with the decision
criterion shift, indicating a failure of reality monitoring
not only at a perceptual but also at a metacognitive
level. These results further show that such failures have
a perceptual rather than a decisional origin.
Interestingly, offline queries at the end of the
experiment revealed global, task-level insight, which
was uncorrelated with local, trial-level insight as
measured with confidence ratings. Taken together, our
results demonstrate that confidence ratings do not
distinguish imagination from reality during perceptual
detection. Future research should further explore the
different cognitive dimensions of insight into reality
judgments and how they are related.

Introduction

Perceptual reality monitoring—inferring whether
sensory signals reflect reality or imagination—operates
at perceptual and metacognitive levels (Dijkstra, Kok,
& Fleming, 2022). Generally, perceptual experiences
of reality correlate with metacognitive beliefs that
such experiences indeed reflect reality. For example,
during dreams or hallucinations, imagined content is
perceived as real and also believed to reflect reality
(Siclari et al., 2017; Zmigrod, Garrison, Carr, & Simons,
2016). However, there are cases where perception
and metacognition of reality diverge. For example,
in Charles Bonnet syndrome, a condition in which
visual impairment is associated with the development
of hallucinations, patients generally have insight into
the unreality of their experiences (Menon, Rahman,
Menon, & Dutton, 2003). Another example is lucid
dreaming, where perceptual experience still “feels real”
but people are aware that they are in fact dreaming
(Baird, Mota-Rolim, & Dresler, 2019; Corlett, Canavan,
Nahum, Appah, &Morgan, 2014; Konkoly et al., 2021).

One way to objectively characterize dissociations
between perceptual and metacognitive processes
is to ask how people evaluate confidence in their
percepts (Fleming & Daw, 2017; Fleming & Lau,
2014). Metacognitive insight into effects of imagery on
perception can then be measured as shifts in confidence:
If participants perceive illusory objects when imagining
and at the same time know they have this tendency,
they might report seeing illusory objects but be less
confident in these reports. If, on the other hand, they do
not know they have this tendency, subjective confidence
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should exhibit the same qualitative effects as perceptual
decisions.

More precisely, if confidence shifts in tandem
with biases in perception, this indicates an absence
of metacognitive insight. In line with this idea,
recent studies of perceptual illusions (such as
motion and color afterimages) have documented
confidence shifts in tandem with idiosyncratic
perceptual biases (Gallagher, Suddendorf, & Arnold,
2019; Mamassian & de Gardelle, 2022). Indeed,
changes in confidence have been proposed as a
diagnostic feature of truly perceptual (as opposed
to decision-level) biases (Gallagher et al., 2019). In
turn, recent computational models have suggested
that perceptual confidence reflects a probability
that one’s response is self-consistent rather than
objectively correct (Boundy-Singer, Ziemba, &
Goris, 2022; Mamassian & de Gardelle, 2022). In
contrast, other studies have documented cases in
which participants’ confidence shows telltale signs of
insight into a first-order decision bias, with so-called
counterfactual confidence being used to update
prior beliefs (Zylberberg, Wolpert, & Shadlen, 2018).
Similarly, cases in which metacognitive sensitivity is
greater than performance have also been documented
(Scott, Dienes, Barrett, Bor, & Seth, 2014), indicating
that some evidence may be accessible to confidence
judgments that is not incorporated into perceptual
decisions.

In this study, we aimed to characterize whether
participants have insight into perceptual reality
monitoring errors by investigating perceptual
confidence in a scenario where both imagery and
perception are at play. We have previously found
that simultaneously imagining congruent stimuli
during perceptual detection leads to an increase in
presence responses, indicating that imagined signals
are sometimes mistaken for perception (Dijkstra,
Kok, & Fleming, 2021; Dijkstra, Mazor, Kok, &
Fleming, 2021; Dijkstra & Fleming, 2023). Here,
we investigated to what extent participants are
metacognitively aware of these reality monitoring
errors by additionally measuring confidence. We
operationalize (lack of) insight here as the extent
to which confidence shifts in tandem with imagery-
induced biases in perception. Within signal detection
theoretic models of confidence, such shifts can be
quantified as the distance between decision criteria
and confidence criteria—if such a distance remains
invariant under shifts of decision criteria, this
would reflect a lack of insight. To evaluate this
hypothesis, we extended a hierarchical Bayesian model
of confidence ratings (Fleming, 2017) to include
a prior over the distances between decision and
confidence criteria, enabling us to infer metacognitive
insight about perceptual reality monitoring
errors.

Materials and Methods

This study was preregistered at https://osf.io/n39tm/.
We initially planned for single-subject analyses, and
after first data collection, we realized that a high number
of participants did not have any false alarms or misses in
one of the conditions. Therefore, we next tried to reduce
this number by staircasing the decision-level criterion
in a second data collection (updated preregistration).
However, after further consideration, we eventually
adopted a hierarchical model, which allowed us to relax
these criteria and include all participants. Moreover,
because the staircasing procedure was orthogonal to
our main question, we decided to combine the two
data sets for the final analyses to achieve maximum
statistical power. To ensure the validity of our results,
we replicated our findings in an independent sample in
Experiment 2.

Participants in Experiment 1

In total, 130 participants (half with the first
staircasing procedure and half with the second) were
recruited using Prolific (www.prolific.co) and completed
the study online. Informed consent was obtained
from each participant included in the study. The
experiment took approximately 50 min to complete,
and participants were paid £7.50 (£9 hourly rate, which
is more than the preregistered hourly rate of £7.50
due to an update of the default within Prolific). All
procedures were approved by the University College
London ethics committee. Data from eight participants
were not obtained due to technical issues. Participants
were furthermore excluded if (a) their mean detection
accuracy over conditions was below chance, (b) they
answered the imagery check (see below) correctly on
fewer than two blocks in any of the conditions, (c)
they indicated in the debrief questions that they did
not imagine the gratings as instructed, and (d) if, for
a given detection response (yes/no), they used the
exact same confidence rating in more than 90% of
the trials. Six participants were moved due to below
55% detection accuracy, 13 due to too few correct
imagery blocks, 1 due to indicating they had not
imagined as instructed, and 0 due to too little variance
in confidence ratings. In total, 102 participants (mean
age = 30.4, SD = 8.5) were included in the final
analyses.

Experimental design and procedure in
Experiment 1

To explain the concept of mental imagery to
participants in a systematized way, they started the
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Figure 1. Experimental design, decision-level responses, and model. (A) Participants were instructed to detect oriented gratings in
noise while simultaneously imagining the same grating (congruent), a grating perpendicular to the to-be-detected stimulus
(incongruent), or nothing (no imagery). After each trial, participants indicated whether a stimulus had been presented on the screen
and after that indicated the confidence in their answer from “complete guess” to “absolutely certain” by moving a slider with their
mouse. (B) Decision criterion was significantly lower during congruent imagery compared to no-imagery and marginally lower during
congruent imagery compared to incongruent imagery. There was no significant difference in criterion between incongruent imagery
and no imagery. (C) In contrast, there was no effect of d′ during congruent imagery, but there was a significant decrease in d′ during
incongruent imagery. (D) Signal detection theory (SDT) model of (congruent) imagery increasing perceptual presence responses by
decreasing the decision-level criterion. Within SDT, a decrease in criterion is equivalent to an increase in the mean sensory strength of
both the noise and signal distributions. c1noim = first-order criterion during no imagery; c1coim = first-order criterion during congruent
imagery. *p < 0.05; **p < 0.005; †p < 0.06; n.s., p > 0.1.

study by filling out a selection of the Vividness of
Visual Imagery Questionnaire (VVIQ2; Marks, 1995).
We chose to focus only on the “shop” part of the
questions to save time and because this part of the
questionnaire has been shown to lead to the highest
vividness scores in the general population (Aphantasia
Network; https://aphantasia.com). This part instructed
the participant to “Think of a shop which you often
go to. Consider the picture that comes before your
mind’s eye.” And then answer questions like “How
vivid is the overall appearance of the shop from the
opposite side of the road?” which participants have to
rate from “no image at all, you only “know” that you
are thinking of the object” to “perfectly clear and as
vivid as real seeing” on a scale from 1 to 5. After the
VVIQ2, participants practiced detecting gratings in
dynamic noise (Figure 1) for six trials or until they had
at least 75% accuracy.

After this, the staircasing procedure started. For the
first data collection, we staircased the visibility of the
grating only based on performance—aiming for a 70%
detection accuracy. We staircased only one orientation
to save time and because previous experiments showed
that the threshold visibility values were comparable
between the two orientations. The staircase contained

120 trials, and accuracy was calculated after every
10 trials. Visibility was increased if accuracy was
below 65% and decreased if it was above 75% correct.
After this, the concept of confidence was explained to
participants and they practiced indicating confidence
in their decision. Finally, participants practiced
imagining the gratings in noise and rated their imagery
vividness afterward on a scale from 1 to 5 for 10 trials
per orientation before continuing to the main task.
Analyzing these data revealed that this staircasing
procedure was suboptimal, resulting in accuracies
higher than the intended threshold (M = 83.6%, SD =
11.7% for the no-imagery condition) and leading to a
low number of false alarms and misses.

For the second data collection, we therefore
additionally aimed to staircase the criterion so that
we would obtain sufficient number of misses and false
alarms. Furthermore, we now included the confidence
ratings already within the staircase to make it more
comparable to the main task. Criterion was staircased
by presenting prompts: If there were no misses in a
mini-block of 16 trials, we presented, “Remember that
sometimes noise might look like a grating and gratings
are present on 50% of the trials”; conversely, if there
were no false alarms, we presented “Remember that the
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gratings are hard to detect and there is a grating present
on 50% of the trials.” This was repeated until the
accuracy was between 50% and 100% and participants
had at least one hit and one miss, or after five blocks
of 16 staircase trials had passed, whichever came first.
Finally, participants practiced imagining the gratings in
noise. The resulting accuracies were slightly closer to
our intended threshold but still higher than intended (M
= 80.7%, SD = 13.5% for the no-imagery condition).

The main experimental design is shown in Figure 1.
In order to avoid visual priming, trialwise cues were
not delivered, and instead the different conditions were
implemented in a blockwise fashion such that during
the entire block, participants detected one specific
orientation and imagined one specific orientation. At
the onset of each experimental block, the participant
was instructed which orientation to imagine and which
orientation to detect. To ensure that participants
accurately followed the imagination instructions, after
each block, we asked participants which orientation
they had imagined. We only analyzed data of blocks
that were answered correctly and of participants who
answered this imagery check correctly in most blocks
(see above). There were 12 experimental blocks in
total, 4 per imagery condition, each consisting of 24
trials. The order of the blocks was randomized within
each participant. Participants used the “F” and “G”
keys with their left hand to perform the detection
task and the mouse with their right hand to indicate
their confidence on a continuous scale. Response-key
mappings—which key, “F” or “G,” corresponds to
presence and which key to absence—were randomized
over participants. To ensure participants properly
indicated their confidence, they had to move the
confidence slider on each trial, at least a small amount,
before the experiment continued. At the end of
the experiment, we asked the following open-ended
questions: (a) the participant’s age; (b) if they imagined
the gratings as instructed; (c) if they thought that
imagining the grating influenced whether they saw one
and, if yes, how (only for the second data collection);
and (d) any if they had any further comments.

Stimuli

The stimuli were generated in MATLAB (version
R2018b) and consisted of sinusoidal gratings with a
spatial frequency of 0.7, tilted at an orientation of
45o or 135o, masked with an annulus and embedded
in white noise (Figure 1). The visibility of the stimuli
was manipulated by changing the probability that a
given pixel was replaced by a random value. For each
orientation separately, stimulus images of 50 visibility
levels were generated. Visibility levels ranged from
0% to 14%, distributed equally in log space. For the
absence trials, 20 images of pure white noise were

generated. The main experiment was programmed in
JavaScript using jsPsych (de Leeuw, 2015). During
stimulus-present trials, 20 stimulus images ranging from
zero visibility to threshold level were presented over the
course of 2 s, giving the impression that the stimulus
was gradually ramping up. This ramping up was done
to mimic the gradual nature of mental image generation
(Perky, 1910). During stimulus-absent trials, 20 noise
images were presented in random order.

Participants in Experiment 2

We performed a power calculation based on the
results from Experiment 1 to determine the number
of participants for Experiment 2. Assuming an effect
size of 0.32, 103 participants would be required to
reach a power of 90% with a two-sided alpha level of
0.05. Taking into account dropout, 130 participants
gave informed consent and completed the study online.
Data recruitment, collection, and exclusion criteria
were identical to the first experiment. Data from three
participants were not collected due to technical issues,
eight participants were removed due to below 55%
detection accuracy, six due to too few correct imagery
blocks, zero due to indicating they had not imagined
as instructed, and two due to too little variance in
confidence ratings. In total, 111 participants (mean age
= 33.16, SD = 9.89) were included in the final analyses.

Experimental design and procedure in
Experiment 2

The design and experiment were identical to both
data collections of Experiment 1 except that the
staircasing procedure was now a mix between the two.
Specifically, in Experiment 2, the confidence rating was
included in the staircasing procedure and the visibility
was only staircased based on accuracy. The visibility
first quickly went down to a level that corresponded to
approximately threshold performance in the previous
sample and was then fine-tuned depending on the
participant’s response: going up if accuracy was below
60% and going down if it was above 80%. This led
to an accuracy of 75.13% (SD = 10.3%) for the no
imagery condition, closer to the intended threshold
than the values obtained with the previous two staircase
procedures. At the end of the main experiment, a global
insight question was asked as follows:

On some blocks you imagined [the same]/[a different] grat-
ing as the one you had to detect. Relative to the blocks
where you didn’t have to imagine anything, how did this af-
fect your tendency to say there was a grating on the screen?

Relative to not imagining anything, imagining [the same]/[a
different] grating . . .
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The answer was indicated using a slider that ranged
from “made me much less like to report seeing a
grating” to “made me much more likely to report seeing
a grating” with “had no effect” in the middle.

Data analyses

We analyzed the first-order decision responses using
standard signal detection theory (Green & Swets,
1966). Detection sensitivity (d′) and criterion (c) were
calculated separately for the imagery and no-imagery
trials as follows:

d ′ = z (H ) − z (FA)

c = −0.5 × [z (H ) + z (FA)]

where z indicates the inverse of the cumulative normal
distribution, H is the hit rate (the proportion of present
trials for which the participant reported presence), and
FA is the false alarm rate (the proportion of absent trials
for which the participant reported presence). Detection
sensitivity d′ is a measure of detection performance,
with greater values indicating better performance.
Criterion c is a measure of participant’s bias toward
responding “yes” (present) or “no” (absent), irrespective
of whether a stimulus is present or not. Greater values
of c indicate a more conservative criterion, indicating a
greater tendency toward reporting absence. Hit rates of
1 or false alarm rates of 0 lead to biased estimations of
d′ and c. To correct for this, in those cases of extreme
values, we added a count of 0.5 to the relevant cell
(Hautus, 1995).

Confidence ratings were first analyzed with
a repeated-measures with response (“absent” vs
“present”) × condition (no imagery vs. congruent vs.
incongruent) as within-subject variables. Next, we
extended the hierarchical meta-d′ model (Fleming,
2017) to allow inference on metacognitive insight
into perceptual reality monitoring errors. In contrast
to standard frequentist approaches, the Bayesian
framework allowed us to quantify evidence in favor of
the absence of metacognitive insight. Prior to fitting the
model, we split the confidence ratings of each subject
and each condition into low and high by first z-scoring
the data and counting all ratings above 0 as high and
below 0 as low.

Within the original HMeta-d′ model, the group-level
parameter of interest is M-ratio M, the ratio between
second-order meta- d′ and first-order decision d′:

M = meta − d ′

d ′

where meta-d′ is calculated by estimating what the
first-order d′ would be based on the observed confidence
ratings alone and d′ is a fixed parameter directly

calculated from the decision data (Fleming, 2017;
Maniscalco & Lau, 2012). An M below 1 indicates that
there is information loss when going from decision to
confidence rating, whereas an M above 1 indicates that
additional information is incorporated at the confidence
rating stage.

Here, in contrast, we were interested in metacognitive
insight into changes in decision criterion c rather
than performance d′. Within the original HMeta-d′
model, the absolute distances between the decision
criterion and the negative and positive confidence
criteria are modeled as being symmetric (the priors for
both positive and negative criteria are shared). This
means that a shift in the decision criterion leads to
an accompanying (symmetric) shift in the confidence
criteria under the default priors (cf. Figure 2A
vs. Figure 2B). Here, in contrast, in order to allow for
independent shifts in insight, we included separate
task-specific group-level priors over the negative c2–
and positive c2+ confidence criteria (μc2-t, σ c2-t and
μc2+t, σ c2+t in Figure 3). Furthermore, we modeled
second-order criteria relative to the first-order criterion
to allow for a direct comparison between the positive
and negative c2 (Figure 3). Asymmetries between
positive and negative c2 distances would indicate some
form of metacognitive insight (cf. Figure 2).

To determine what kind of effects we would expect
to find, we simulated confidence ratings under both a
no-insight (H0) and a full-insight (H1) model. We based
the group Type 1 parameters (d′, c1 no imagery, c1
imagery) on the data and set the group Type 2 criteria
for the imagery condition separately for the no-insight
and full-insight model as follows:

Parameter c1 c2 − c2 +
No imagery (for both models) 0.2 −0.6 1
Imagery (no-insight model) 0 −0.8 0.8
Imagery (full-insight model) 0 −0.6 1

The group Type 1 d′ was set to 2.5 and the group
M-ratio—a measure of metacognitive sensitivity—was
set to 0.8. For each condition, we simulated 100
participants with 96 trials each. For each participant,
parameter values were drawn from a Gaussian
distribution with a mean set to the group values listed
above and a sigma of 0.2 for Type 1 parameters and
0.5 for Type 2 parameters. We next used the function
“metad_sim.m” from the HMeta-d′ toolbox (Fleming,
2017) to calculate the probability of different trial types
(low and high confidence false alarms, hits, misses,
and correct rejections) under a Type 2 signal detection
theoretic model with these parameters. Confidence
ratings for absence responses were calculated as the
proportion of high-confidence correct rejections and
high-confidence misses divided by the total proportion
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Figure 2. Modeling insight into perceptual reality monitoring. (A) Illustration of shift in confidence criteria compared to first-order
criterion. If participants have no insight into their first-order criterion shift, we would expect confidence criteria to move with the
decision-level criterion shift. coim = congruent imagery; c1 = first-order criterion; c2− = negative second-order (metacognitive)
criterion; c2+ = positive second-order criterion; �c2+/− = c2 relative to c1 (i.e., c2–c1). (B) In contrast, if participants have insight
into the fact that imagery increases perceptual presence, their confidence criteria would remain closer to the no-imagery criterion.
(C) Simulated confidence ratings under a no-insight model. Left: compared to no imagery, imagery leads to lower confidence in
absence responses and higher confidence in presence responses. Right: asymmetry between positive and negative confidence
criteria, relative to the position of the first-order criterion (�c2+ – |�c2–|). The black line indicates the HDI representing the 95%
most credible values of the posterior. The HDI is centered around 0, indicating symmetrical positive and negative �c2 values and
therefore a symmetrical shift in confidence criteria relative to the Type 1 criterion effect. (D) Simulated confidence ratings under a
full-insight model. Left: imagery leads to higher confidence in absence responses and lower confidence in presence responses. Right:
there is a positive asymmetry between positive and negative �c2 values, indicating that confidence criteria stay closer to what would
be expected under no imagery, in line with insight into the effect of imagery on perception. (E) The confidence effect, operationalized
as the interaction between condition and response on confidence ratings, for repeated independent simulations under no insight (H0;
top, dark purple) and full insight (H1; bottom, light purple), with other parameter values drawn from distributions consistent with the
empirical data. Positive t-values reflect a decrease in confidence for absence and an increase for presence for imagery versus no
imagery, whereas negative t-values reflect the opposite. Filled circles have a p value <0.05 (uncorrected). (F) HDIs of the asymmetry
between positive and negative confidence criteria for repeated simulations under both the no-insight model (H0; top, dark purple)
and the full-insight model (H1; bottom, light purple).

of correct rejections and misses. Confidence ratings for
presence responses were calculated as the proportion of
high-confidence hits and high-confidence false alarms
divided by the total proportion of hits and false alarms.
We next applied both frequentist as well as hierarchical
Bayesian statistics on the simulated data to determine
the expected results under the two models (see Figure 2
and main text for more details).

Mistaking imagination for reality
during perceptual detection

In a first experiment, 102 participants performed a
perceptual detection task on gratings that gradually
appeared within dynamic noise while simultaneously

imagining either the same grating (congruent) or a
grating orthogonal to the one they were detecting
(incongruent) or nothing (no imagery; Figure 1A). In
line with previous findings, we observed a significant
decrease in decision criterion (that is, an increased
tendency to report stimulus presence) specifically for
congruent imagery (M = 0.01, SD = 0.73) compared
to no imagery (M = 0.22, SD = 0.57, t(101) =
3.10, p = 0.0025, d = 0.32, 95% CI difference =
0.07 to 0.34; Figure 1B). While the criterion for
congruent imagery was numerically lower than that
for incongruent imagery (M = 0.16, SD = 0.61), this
difference did not reach significance (t(101) = 1.98, p =
0.0502, d = 0.23, 95% CI difference = −0.0002 to 0.31).
Finally, there was no significant difference in criterion
between incongruent imagery and no imagery (t(101)
= −0.96, p = 0.341, d = −0.09, 95% CI difference =
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Figure 3. Current extension of the HMeta-d′ model. Probabilistic graphical model for estimating metacognitive insight into criterion
shifts. A full description of the original HMeta-d′ model, here indicated in light gray, can be found in Fleming (2017). In short, the
model aims to estimate trial counts (counts) per confidence rating bin conditional on both the stimulus category (S1, i.e., presence
and S2, i.e., absence) and the response (S1, i.e., “present” and S2, i.e., “absent”). Given a particular setting of the parameters, the
model specifies a multinomial probability distribution P(conf = y |stim = i, resp = j) over observed confidence response counts. We
extended the model to include group-level priors (mean and variance) over the difference between decision c1 and confidence c2
criteria, separately for negative (absence) c2– (µc2-t and σ c2-t) and positive (presence) c2+ (µc2+t and σ c2+t) responses. Group-level
variance is translated into subject-specific precision δc2 − t and δc2 + t. Point estimates for type 1 d′ and criterion are represented as
black dots. All parameters in unfilled circles are free parameters estimated by the model. The box encloses participant-level
parameters subscripted with s, whereas parameters outside the box represent group-level parameters. Condition specific
(no-imagery vs. imagery) parameters are subscripted with t. We employ the scheme suggested by Matzke et al. (2014), such that the
mean and variance of log(Ms) are scaled by a redundant multiplicative parameter ξM. The posterior on σM can then be recovered by
adjusting for the influence of this additional random component.

−0.16 to 0.06). Instead, and consistent with previous
findings, there was a significant decrease in d′ during
incongruent imagery (M = 2.22, SD = 1.54) compared
to congruent imagery (M = 2.63, SD = 1.76; t(101)
= −2.50, p = 0.014, d = −0.25, 95% CI difference =
−0.74 to −0.09). Together, these results demonstrate
that participants were more likely to indicate perceptual
presence when simultaneously imagining the same
stimuli while incongruent imagery merely decreased
performance (Figure 1D). These results are in line with
previous studies and are interpreted to reflect perceptual
reality monitoring errors: Participants are more likely
to say there was a grating on the screen when the same
stimuli were both imagined and perceived (Dijkstra et
al., 2021; Dijkstra et al., 2021; Dijkstra & Fleming,
2023).

Quantifying insight into perceptual
reality errors

We next aimed to characterize insight into these
reality monitoring errors using a signal detection
theoretic model of metacognition. As noted above,
within a signal detection framework, congruent imagery
leads to a more liberal decision criterion and more
“presence” responses, which we interpret as being
the result of imagery adding signal strength to both
the noise and signal distribution. Subjects who are
metacognitively aware of this shift should be less
confident in their “presence” responses when they
are imagining the target stimulus, because a liberal
criterion means they are more likely to commit a false
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alarm. Similarly, they should be more confident in
their “absence” responses when imagining the target
stimulus, because a liberal criterion means they are
less likely to miss presented stimuli. In contrast, if
subjects have no metacognitive insight into the effects
of imagery on their perceptual presence responses, they
should be more confident in their “presence” responses
and less confident in their “absence” responses, as their
confidence ratings should follow their perceptual bias
towards reporting “presence.”

These effects can be quantified by tracking the
position of their metacognitive (confidence) criteria:
the cutoff points at which participants rate their
decision as high versus low confidence (Figures 2A, 2B).
If participants have no insight into the influence of
imagery on their responses, confidence criteria should
shift in tandem with the decision-level criterion,
and the distance between the confidence criteria
and the Type 1 criterion should be symmetric for
positive and negative values (Figure 2A). In contrast,
if participants are aware that imagery increases
perceptual presence, confidence criteria should remain
closer to the no-imagery condition, creating an
asymmetry in distances between the positive and
negative confidence criteria and the Type 1 criterion
(Figure 2B).

In order to arbitrate between these two hypotheses,
we simulated what the data would look like under the
two models (H0: no insight and H1: correct insight)
using similar type 1 d′ and c parameter values to those
found in the empirical data (Figure 1). In line with
intuition, under a no-insight model, congruent imagery
is associated with a decrease in confidence for “absence”
and an increase in confidence for “presence” compared
to no imagery (Figure 2C, left). In contrast, correct
insight shows exactly the opposite pattern with an
increase in confidence for “absence” and a decrease in
confidence for “presence” (Figure 2D, left).

Another, more model-based way to measure the
level of insight is by estimating the asymmetry between
the positive and negative confidence criteria relative
to the first-order decision criterion: If there is no
insight, the confidence criteria will move in tandem
with the decision criteria, leading to symmetrical
distances between c1 and c2+ and between c1 and
c2− (Figure 2A). In contrast, in the case of a correct
insight, the confidence criteria will remain close to the
no-imagery case despite the decrease in the first-order
criterion. This will result in a larger distance between
c2+ and c1 than between c2− and c1 (Figure 2B).

To directly characterize this asymmetry in confidence
criteria, we extended the hierarchical meta-d′ model
(Fleming, 2017; Maniscalco & Lau, 2012). Specifically,
we modeled the second-order (metacognitive) criteria
on confidence as free parameters and allowed for
asymmetries between the distances from the decision
criterion to the negative (“absence”) and positive

(“presence”) confidence criteria. Applying this analysis
to our simulated data indeed showed that no insight
was associated with symmetric confidence criteria;
that is, the highest-density interval (HDI) of the
difference between positive and negative confidence
and decision criteria was centered around 0 (Figure 2C,
right). In contrast, correct insight was associated with
a larger positive confidence criteria distance with
the HDI of the difference exceeding 0 (Figure 2D,
right).

We next repeated these simulations 100 times for
each model to estimate the reliability of each of these
effects. These simulations revealed that the confidence
effect, defined as a t-test on the interaction between
condition (imagery vs. no imagery) and response
(presence vs. absence), was always positive under the
no-insight model and always negative under the correct
insight model (Figure 2E). However, the confidence
interaction effect under the no-insight model appeared
to be statistically less robust with more t-values closer
to the significance threshold. The HDI of the difference
in confidence criteria was always centered around 0
for no insight and always above 0 for correct insight
(Figure 2F). To characterize metacognitive insight in
our empirical data, we estimated both the confidence
effect using classical statistics as well as the asymmetry
of the confidence criteria using our extension of the
hierarchical meta-d′ model.

Confidence ratings reveal absence
of insight into perceptual reality
errors

After successful validation of our analysis pipeline,
we next turned to our empirical confidence ratings. Prior
to applying our analysis pipeline to investigate insight
into reality monitoring errors, we first checked whether
there were any differences in metacognitive efficiency
between the conditions using the standard hierarchical
meta-d′ model (Fleming, 2017). This analysis revealed
no significant differences in metacognitive efficiency
(meta-d′/d′) between no imagery (95% HDI = 0.53 to
0.67), congruent imagery (HDI = 0.47 to 0.65), and
incongruent imagery (HDI = 0.48 to 0.65), indicating
that metacognitive sensitivity was similar between
the conditions (Supplementary Fig. S1). We next
investigated the effects of condition on both confidence
and the asymmetry in confidence criteria to characterize
metacognitive insight (Figure 2).

We first ran a repeated-measures analysis of variance
(ANOVA) test on the confidence ratings from all
conditions, including only data from participants with
misses and false alarms in all conditions (N = 59). This
revealed no significant effects of condition (Figure 4A).
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Figure 4. Metacognitive insight during source mixing. (A) Confidence ratings per condition and trial type for Experiment 1 (CR =
correct rejection; FA = false alarm). Only data for participants with all trial types in all conditions are shown (N = 59). (B) Confidence
ratings per response category for no-imagery and congruent imagery conditions, as in Figures 2C, 2D, included data from all
participants. (C) Asymmetry between positive and negative confidence criteria, relative to the position of the first-order criterion.
Positive values indicate more insight (cf. Figures 2C, 2D). (D) Reaction times per response for no-imagery and congruent imagery
conditions. (E–H) Same as A–D for Experiment 2. *p < 0.05; ***p < 0.0005.

Furthermore, directly comparing confidence in presence
and absence responses, irrespective of input, between no
imagery to congruent imagery qualitatively followed the
no-insight pattern, with higher confidence for presence
responses and lower confidence for absence responses
during congruent imagery (Figures 4A, 4B), but there
was no significant interaction between condition and
response (t(101) = 0.94, p = 0.35). Fitting our extension
of the hierarchical meta-d′ model to our data provided
a good fit (Supplementary Fig. S2). The results showed
that the asymmetry between the negative and positive
confidence criteria was centered around 0, in line with
no insight (Figure 4C; M = −0.07, 95% HDI = −0.33
to 0.22). Moreover, the relative confidence criteria
were comparable between the imagery and no-imagery
conditions, showing that they indeed shifted in tandem
with the perceptual criterion shift (95% HDI �c2 +
no_imagery

−�c2 + congruent_imagery = −0.3 to 0.28 and 95%
HDI �c2 – no_imagery

−�c2 – congruent_imagery = −0.29 to

0.26). Finally, given that reaction time often (negatively)
correlates with confidence (Rahnev et al., 2020), we
performed an exploratory analysis to investigate the
effects of condition on reaction time. There was a
significant interaction between condition and response
(t(101) = −2.07, p = 0.041, d = 0.26, CI = −0.067 to
−0.001; Figure 4D), with faster presence responses
during congruent imagery (t(101) = 2.17, p = 0.032,
d = 0.22; CI = 0.282–0.696).

Given that first-order performance was higher
than anticipated in Experiment 1, potentially due
to our staircasing procedure, and that some results
were unclear, we decided to repeat the experiment
in an independent sample with a slightly different
staircasing procedure (see Materials and Methods for
more details) to ensure that our findings are replicable.
The experimental procedure was mostly identical to
the first but also included global insight questions
at the end (see section below). After exclusion, data
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from 111 participants were analyzed. We first again
replicated the decision-level effect, showing a decrease
in criterion for congruent imagery (M = 0.23, SD =
0.50) compared to no imagery (M = 0.35, SD = 0.53,
t(110) = 2.48, p = 0.015, d = 0.22, 95% CI difference
= 0.02–0.21) but not for incongruent imagery (M =
0.32, SD = 0.56, t(110) = 0.813, p = 0.42, d = 0.06,
95% CI difference = −0.04 to 0.10). In contrast, there
was a significant decrease in d′ for incongruent imagery
(M = 1.56, SD = 1.25), compared to no imagery (M
= 1.72, SD = 1, t(110) = 2.16, p = 0.033, d = −0.14,
95% CI difference = 0.01–0.32), but not for congruent
imagery (M = 1.75, SD = 1.27, t(110) = −0.27, p =
0.79, d = 0.02, 95% CI difference = −0.2 to 0.15). These
results again show that participants were more likely
to indicate perceptual presence when imagining the
same stimulus, whereas imagining a different stimulus
merely decreased performance. Finally, similar to
Experiment 1, there were no significant differences in
metacognitive efficiency between no imagery (HDI
= 0.44 to 0.59), congruent imagery (HDI = 0.37 to
0.55), and incongruent imagery (HDI = 0.45 to 0.61;
Supplementary Fig. S1).

We next again first ran a repeated-measures ANOVA
on the confidence ratings from all conditions, including
only data from participants with misses and false
alarms in all conditions (N = 59). This time, we did
find a significant main effect of condition (F(182, 2) =
6.64, p = 0.002, ηp

2 = 0.068). Post hoc tests revealed
that this effect was driven by a decrease in confidence
in the incongruent imagery condition (M = 52.1, SD =
15.2) compared to both no imagery (M = 53.5, SD =
15.5, t(91) = 2.28, p = 0.79, d = 0.02, 95% CI difference
= −0.2 to 0.15) and congruent imagery (M = 1.75, SD
= 1.27, t(110) = −0.27, p = 0.79, d = 0.02, 95% CI
difference = −0.2 to 0.15). There was no significant
difference between congruent imagery and no imagery
in confidence ratings (t(91) = 1.322, p = 0.188, d =
−0.138, 95% CI difference = −0.25 to 0.74). This
decrease in confidence during the incongruent condition
presumably reflected the decrease in performance
in that condition. Interestingly, there was now also
a significant interaction between condition and
response (Huyn–Feldt corrected F(172.48, 1.9) = 3.937,
p = 0.023, ηp

2 = 0.041). Post hoc analyses revealed
that confidence of presence responses, not absence
responses, was higher for congruent imagery (M =
53.94, SD = 17.2) compared to no imagery (M = 51.19,
SD = 17.83, t(91) = 2.71, p = 0.008, CI = 0.73–4.78,
d = 0.16) and incongruent imagery (M = 50.15, SD =
17.9, t(91) = 4.3, p = 0.0004, CI = 2.04–5.55, d = 0.22).

In line with this, directly comparing confidence for
presence and absence responses irrespective of input
between only no imagery and congruent imagery
revealed a significant interaction between condition and
response on confidence ratings (t(110) = 2.302, p =
0.023, d = −0.30, CI = 0.30 to 4.05). Post hoc paired

t-tests revealed that confidence of presence responses,
not absence responses, was higher for congruent
imagery compared to no imagery (t(110) = −2.37,
p = 0.019, d = −0.23, CI = −2.71 to −0.24;
Figures 4E, 4F), in line with no insight (cf. Figure 2C).
We next quantified metacognitive insight using our
extension of the hierarchical meta-d′ model. In line
with the results from Experiment 1, we again found
that the HDI was centered around 0, indicating that the
confidence criteria moved along with the decision-level
criterion, in line with no insight (Figure 4G, M =
−0.14, 95% HDI = −0.44 to 0.15). Furthermore, the
relative confidence criteria were again comparable
between the imagery and no-imagery conditions (95%
HDI �c2 + no_imagery

−�c2 + congruent_imagery = −0.26 to
0.27 and 95% HDI �c2 – no_imagery

−�c2 – congruent_imagery
= −0.26 to 0.33). Finally, there was also a significant
interaction between condition and response on reaction
time (t(110) = −3.65, p = 0.004, d = 0.37, CI = −0.065
to −0.019), with faster presence responses during
congruent imagery compared to no imagery (t(110) =
2.14, p = 0.035, d = 0.20, CI = 0.002 to 0.042), again in
line with no insight.

Taken together, even though the results from the
frequentist analyses of the confidence ratings were
inconclusive, the qualitative pattern of results over
the two experiments is in line with a no-insight model
(cf. Figure 2C).

Postexperiment queries reveal
global insight into perceptual
reality monitoring errors

Taken together, our results suggest that people do
not have insight into the influence mental imagery
has on their perception at the level of individual
trials. However, one intriguing possibility is that they
do have insight at a more global level but that this
awareness is not incorporated into local within-task
confidence ratings. Dissociations between local and
global metacognition have previously been reported
in relation to several dimensions of mental ill health
(Bhome et al., 2022; Seow, Rouault, Gillan, & Fleming,
2021) as well as in normal aging (McWilliams, Bibby,
Steinbeis, David, & Fleming, 2023).

To investigate this possibility in the context of our
study, we included global insight questions at the end
of both experiments. At the end of Experiment 1,
we asked the open-ended question, “Do you think
imagining the gratings influenced whether you saw
a grating?” Of the 51 participants who answered
this question, 24 (47.1%) thought that imagery did
have an influence, 19 (37.2%) were unsure, and only
8 (15.7%) thought that imagery did not influence
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Figure 5. Postexperiment queries indicate insight. (A) Proportion of participants indicating that they thought imagery influenced their
perceptual response after Experiment 1. N = 51. (B) Responses to the question whether imagery made participants more or less
likely to indicate perceptual presence, separate for congruent (blue) and incongruent (red) conditions, after Experiment 2. Dots
represent individual participants. ****p < 0.0001; n.s. = non-significant.

was they saw (Figure 5A). Due to the qualitative
nature of this question and the fact that only a
small number of participants answered it, we were
unable to link global insight to local insight in
Experiment 1.

To address this, after the second experiment,
we interrogated global insight using a structured
questionnaire. We asked participants to indicate
how they thought imagining the gratings influenced
their detection responses relative to not imagining
by moving a slider ranging from 0 = “made me
less likely to say I saw a grating” to 100 = “made
me more likely to say I saw a grating” with the
center of the scale indicating 50 = “no effect.” This
question was asked in relation to imagining the same
grating (congruent) or imagining a different grating
(incongruent).

Global insight ratings indicated that, overall,
participants accurately indicated that congruent
imagery made it more likely for them to report presence
compared to no imagery (M = 68.14, SD = 19.79,
t(110) = 9.65, p < 0.0001, CI = 64.41–71.86, d = 0.92),
whereas for the incongruent imagery, the ratings were
not significantly different from the center, “no effect”
point (M = 46.63, SD = 25.92, t(110) = −1.37, p =
0.17, CI = 41.75–51.51, d = 0.13). This suggests that
participants did have global insight into the effect of
imagery on perceptual presence responses. However,
there was no significant correlation between the extent
to which participants believed imagery increased their
presence responses and how much it actually did,
measured by the decision-level criterion shift (r =
0.12, p = 0.2). Furthermore, there were no significant
correlations between global insight and local confidence
ratings in any of the conditions (all absolute rs < 0.15,

all ps > 0.11). These results suggest that the insight
judgment at the end of the experiment might have relied
on different cognitive mechanisms than the decisions
and confidence ratings elicited during the perceptual
detection task.

Discussion

In this study, we set out to investigate insight into
perceptual reality monitoring errors. To this end,
we asked participants to indicate confidence in a
perceptual detection task while they simultaneously
also imagined the stimuli they had to detect. In line
with previous studies, we first observed a decrease
in detection criterion during congruent imagery,
indicating that participants more often reported seeing
a stimulus. This is in line with imagery adding sensory
evidence to both the noise and signal distributions,
indicating that imagery can sometimes be mistaken for
perception. We extended a hierarchical Bayesian model
of confidence to characterize metacognitive insight into
these perceptual reality monitoring errors. We reasoned
that if participants have insight into the increase in
sensory evidence due to imagery, they would alter their
confidence criteria relative to their decision criteria to
become less confident in “presence” responses during
congruent imagery. In contrast, if participants have
no insight into the effect of imagery, their confidence
criteria would follow their decision criteria, leading
to more confident “presence” responses. Over two
experiments, we showed that confidence criteria
moved in tandem with the decision criterion shift,
indicating a lack of awareness of the effect of imagery
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on perceptual presence responses. In Experiment 2,
there was also an increase in confidence for presence
responses during congruent imagery. Interestingly,
however, offline queries indicated some level of global
insight into the influence of imagery on perceptual
detection, but this insight was unrelated to perceptual
decisions and confidence ratings. Together, our results
demonstrate a lack of local insight into mistaking
imagination for reality at the level of confidence
ratings.

The observation that congruent imagery increases
both perceptual presence responses and confidence in
those responses is in line with the idea that imagery
can function as perceptual evidence (Dijkstra et al.,
2022; Dijkstra et al., 2021). Specifically, while an
imagery-induced increase in “presence” responses can
be equally explained by a stronger perceptual signal
or a shift in the decision criterion, the corresponding
shifts in confidence criteria break this indeterminacy in
favor of a perceptual account (Gallagher et al., 2019).
This idea is further supported by neuroimaging studies
showing that imagery is associated with perception-like
neural representations throughout the visual cortex
(Albers, Kok, Toni, Dijkerman, & De Lange, 2013;
Dijkstra, Bosch, & van Gerven, 2019; Pearson, 2019;
Ragni, Tucciarelli, Andersson, & Lingnau, 2020).
Sensory activation during imagery tends to be much
weaker than during externally triggered perception,
which might be why we generally do not mistake our
imagination for reality (Dijkstra & Fleming, 2023;
Koenig-Robert & Pearson, 2021). However, our results
indicate that in ambiguous contexts, imagery-induced
sensory signals might be erroneously judged as
real.

Furthermore, in Experiment 2, we found that
congruent imagery was associated with an increase
in high-confidence false alarms. High-confidence false
alarms have recently been proposed as a proxy for
studying hallucinations in nonhuman animals, with
studies in mice linking these percepts to elevated
striatal dopamine (Schmack, Bosc, Ott, Sturgill,
& Kepecs, 2021). In that context, hallucinations
were induced by either manipulating perceptual
expectation or reward expectation. To what extent
imagery-induced hallucinations rely on similar
mechanisms is unclear. One possibility is that imagery
functions as a perceptual expectation, increasing
the prior for imagined content. However, contrary
to the usual (Bayesian) function of expectation,
imagery tends to be used to generate perceptual
information about stimuli that we know are not present
in the environment (Kosslyn, Ganis, & Thompson,
2001). Future research is necessary to investigate
how these different types of hallucinations are
related.

Our findings demonstrate the multidimensional
nature of insight. Despite the fact that perceptual reality

judgments and confidence ratings in those judgments
indicated an absence of insight, participants were
nevertheless able to accurately indicate that congruent
imagery would make them more likely to report
perceptual presence in response to postexperiment
questioning, suggesting some more global form of
insight. However, these offline responses were unrelated
to online perceptual reality judgments or confidence
ratings, suggesting that these two forms of insight are
driven by different factors. Offline insight judgments
might, for example, rely more on abstract knowledge
rather than direct perceptual experience during the
task. This dissociation might in turn be related to a
distinction between perception of reality and beliefs
about reality (Dijkstra et al., 2022).

One recent study aimed to directly dissociate
perceptual reality and beliefs about reality in the context
of a visual illusion (Mihali, Broeker, Ragalmuto, &
Horga, 2022). Prior to the experiment, participants
were informed about how the illusion worked and then,
in separate blocks, had to indicate their perceptual
experiences (“what do you see”) and their beliefs
(“what do you believe is presented on the screen”)
while rating confidence in both. The results indicated
that confidence ratings always tracked the first-order
decision but that, in contrast to perceptual judgments,
the belief judgments reflected insight into the visual
illusion (Mihali et al., 2022). In our study, we asked
participants “was there a grating on the screen?” which
could refer either to their belief or to their perception.
Future research is necessary to further disentangle these
two levels of reality monitoring during simultaneous
imagery and perception.

Similar dissociations between different levels
of insight have been documented in relation to
functional cognitive disorders—conditions in which
patients believe that their cognitive functioning has
declined despite intact performance on cognitive tasks
(Pennington et al., 2015). A recent study of patients
with functional memory disorder showed that despite
a global belief of low memory performance, online
confidence ratings during a memory task demonstrated
intact metacognitive sensitivity (Bhome, McWilliams,
Huntley, Fleming, & Howard, 2019). The authors
hypothesized that this dissociation might be due to
a disconnection syndrome in which global priors
are unable to influence local confidence ratings. A
similar mechanism might be at play in the current
context, where the drivers of offline insight are unable
to influence local perceptual reality judgments on
individual trials.

In conclusion, by extending a hierarchical Bayesian
model of metacognition to characterize confidence
judgments during a simultaneous imagery and
perceptual detection task, we reveal an absence of local
insight into mistaking imagination for reality. However,
at a global level, participants were able to indicate how
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imagery influenced their perceptual responses at the
end of the experiment. Future research is necessary to
investigate these different levels of insight and how they
relate to disorders of perceptual reality monitoring.

Keywords: mental imagery, reality monitoring,
metacognition, Bayesian modeling
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