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Abstract

We provide a generalized, normative model of visual detection
that accounts for key asymmetries between decisions about
presence and about absence. In our model, decisions about
presence are made based on the visibility of presented stimuli,
but decisions about absence are made based on counterfactual
visibility: beliefs about the degree to which a stimulus would
have been visible if present. Behavioral patterns in visual de-
tection experiments under different levels of partial occlusion
validate key model predictions. Specifically, we find that un-
like decisions about presence, the confidence and speed of de-
cisions about absence are largely independent of perceptual
evidence, but are sensitive to the counterfactual visibility of
absent stimuli. Finally, we reveal robust individual differences
in counterfactual perception, with some participants system-
atically incorporating counterfactual visibility into perceptual
decisions in a different fashion from others. We discuss impli-
cations for the varied and inferential nature of visual percep-
tion more broadly.
Keywords: perceptual decisions; counterfactual reasoning;
absence; metacognition; Bayesian modeling; ideal observer

Introduction
After checking Taylor Swift’s Wikipedia page, we are confi-
dent that she hasn’t announced her retirement from music. If
she had, it would have been mentioned on her page. We also
checked Russian cellist Natalia Gutman’s page and didn’t see
any mention of a similar announcement, but we are not so
sure she hasn’t made one since her Wikipedia page only gets
updated irregularly. The absence of evidence on Wikipedia
is enough to make a solid inference in the case of Swift but
not in the case of Gutman because we know that information
about Swift spreads more efficiently on the internet.

More generally, inferences about the negation of a hypoth-
esis (H) depend on our belief in the probability that we would
observe evidence (E) if H were true (p(E|H)) (Oaksford &
Hahn, 2004; Walton, 1992, 2010). In other words, we be-
lieve that something is not true (for example, that Taylor Swift
hasn’t announced her retirement from music) when we be-
lieve that “if it were true, we would have heard about it by
now” (Goldberg, 2011).

Here we ask whether a similar principle is at play within
perception. According to inferential, “inverse optics” ac-
counts, perception is the inference of latent external causes
based on noisy sensory data (Alhazen & Smith, 2001; Fris-
ton, 2010; Gershman, Vul, & Tenenbaum, 2012; Helmholtz,
1866). For such inference to be rational, evidence, or its ab-
sence, is interpreted in light of its relative likelihood under

Figure 1: Rationale and experimental design. A) occlud-
ing more of a target stimulus (for example, the letter S) de-
creases its visibility (black markers). Occlusion has no effect
on target visibility when the target is absent, but it affects
counterfactual visibility (white markers): the expected visi-
bility of the target, had it been present. B) example frames
from target-present (blue) and target-absent (red) trials. C)
trial structure. Participants performed two 32-trial detection
blocks in which the target was the letter S and two blocks in
which the target was the letter A. The order of the two letters
was randomised between participants. On different trials we
occluded a random subset of 2 or 6 pixel rows.

competing world states. As a result, perceptual decisions
in the absence of a stimulus, their biases, timing, and con-
fidence, should be affected not only by visibility, but also by
counterfactual visibility – implicit beliefs about the visibil-
ity of hypothetical stimuli that are not in fact present. Here
we ask whether counterfactual visibility is in fact used when
making perceptual decisions.

Results

Overall, we ran a series of three pre-registered and two ex-
ploratory experiments. Our key results were consistent across
all experiments. Due to space limitations, we describe here
the results from the one experiment in the series in which we
collected subjective confidence ratings. Experiment demos,
reproducible analysis code, links to pre-registrations and the
full pre-registered analysis from all experiments are available
at github.com/matanmazor/counterfactualVisibility.

https://github.com/matanmazor/counterfactualVisibility


Perceptual detection under partial occlusion

252 participants performed a near-threshold detection task,
in which they made decisions about the presence or absence
of a target letter (A or S, in different blocks) in a noisy, dy-
namic stimulus (Fig. 1B). On different trials, either 2 or 6
rows of pixels were occluded by randomly positioned lines
(Fig. 1A). Participants’ task was to “ignore the black stuff,
focus on the noise that is under it, and determine whether
the letter appeared in it or not”. Importantly, the stimulus
remained on the screen, refreshing at 15 frames per second,
until a response was made. After making a decision, partic-
ipants rated their confidence on an analog scale (Fig. 1C).
Based on our pre-registered exclusion criteria (below-chance
accuracy or more than 25% of reaction times below 100 ms
or above 5000 ms), we excluded 18 participants, leaving 234
for the main analysis.

Presence-absence asymmetries After exclusion, mean ac-
curacy in the main experiment was 0.81 (SD=0.03). Partic-
ipants were biased to report target absence (0.57 of all re-
sponses, SD= 0.08). Consistent with the response time and
confidence profile of detection tasks (Mazor, 2021; Mazor &
Fleming, 2022; Mazor, Maimon-Mor, Charles, & Fleming,
2023; Mazor, Moran, & Fleming, 2021), response times were
significantly shorter in “target present” compared to “target
absent” responses (1.98 vs 2.40 seconds; t(233) = −15.18,
p < .001; Fig. 2A), and confidence was higher in decisions
about presence compared to absence (0.93 vs. 0.92 on a 0.5-1
(guess to full certainty) scale; t(233) = 2.92, p = .004; Fig.
2B).

Exploratory reverse correlation analysis Since lumi-
nance values were randomly sampled per pixel and frame, the
perceived similarity between the presented stimulus and the
target letter fluctuated both within and between trials. This
allowed us to directly measure how stimulus-target similarity
or dissimilarity (quantified as the Pearson correlation between
unoccluded pixels and their corresponding pixels in the target
letter, statistically controlling for the proportion of pure-noise
and hidden pixels in the frame) contributed to reaction times
in decisions about presence and absence.

Following previous reverse correlation studies of decision
confidence (Mazor et al., 2023; Zylberberg, Barttfeld, & Sig-
man, 2012), we focused our analysis on the first 300 ms of
stimulus presentation, and extracted, per frame and per trial,
the mean similarity between the visual noise and the target
letter in these first frames. We then computed the Spearman
correlation between these trial-wise similarity measures and
reaction times and confidence, focusing our analysis on cor-
rect responses only (see Fig. 2).

Higher levels of stimulus-target similarity in the first 300
ms of the trial made participants quicker to detect the tar-
get letter when it was present (t(250) = −7.78, p < .001;
Fig. 2C), and made them more confident in their correct
“target present” decisions (t(234) = 3.15, p = .002; Fig.
2D). In contrast, stimulus-target similarity had no effect on

Figure 2: Behavioural results. Detection asymmetries in reac-
tion times (A) and subjective confidence (B). Reverse corre-
lation reveals detection asymmetries in the weighting of per-
ceptual evidence in reaction time (C) and confidence (D). In-
dividual points represent the mean correlation value for in-
dividual frames. Error bars and shaded areas represent the
standard error of the mean. Black lines represent the first 300
ms of the trial. **: p<0.01,***:p<0.001.

the speed (t(250) = 1.25, p = .214; BF10 = 0.15) or confi-
dence (t(242) = 0.79, p = .432; BF10 = 0.12) of correct de-
cisions about absence. Moreover, the effect of stimulus-target
similarity was stronger in “target present” compared to “tar-
get absent” responses for both reaction time (t(249) = 4.62,
p < .001) and confidence (t(232) = 3.13, p = .002). Unlike
decisions about presence, which were driven by the similarity
of the stimulus to the target letter, the speed and confidence
of decisions about absence was not based on dissimilarity to
the target letter.

An ideal observer model of perceptual detection
Presence-absence asymmetries in reaction time and confi-
dence are expected if evidence is only ever available to sup-
port presence, leaving absence to be inferred tentatively and
based on the absence of evidence. This explanation is consis-



Figure 3: An ideal observer model of detection. A: model
specification. B: predictions for an ideal observer.

tent with our reverse correlation results, where perceptual evi-
dence drove confidence and decision times in decisions about
presence, but not absence. To formulate this asymmetry in
the availability of evidence, we present a Partially Observed
Markov Decision Process (POMDP, Littman, 2009) model
of perceptual detection (Fig. 3A). We begin by presenting
the model in its simplest form, before introducing the addi-
tional effects of occlusion. Crucially, our motivation here is
to ask about the evidence structure that renders participants’
behaviour rational (Anderson, 1990). As we show, asymme-
tries in decision time and decision confidence are borne out
of rational evidence accumulation when the value of positive
and negative evidence is itself asymmetrical.

A POMDP is a 7-tuple: < S ,A ,T ,Ω,O,∇,γ >. The state
space S comprises two states describing target presence or
absence and two additional states for trial endings: correct
and incorrect. The action space A has three possible actions:
“wait”, “decide present”, and “decide absent”. The transi-
tion function T : (S ,A)→ S specifies the effect of actions on
state transitions. “wait” maps states to themselves, and decid-
ing maps states to the “correct” or “incorrect” states depend-
ing on the accuracy of the decision. Ω is the set of possible
observations. We assume these are [0,1], that is, perceptual
evidence has a binary form. O : S → P(Ω) is a probabilis-
tic function from states to observations, which we describe in
more detail below. ∇ : S → R maps states to reward values.
We set the values of all states to 0, except “correct” which is
associated with a value of 1. Finally, the temporal discount
factor γ affects the subjective value of anticipated rewards.
We set γ := 0.99, meaning that a reward obtained in the next

time point is worth 0.99 of its worth if obtained now.
The observation function O is a Bernoulli distribution func-

tion, such that the probability of observing 1 equals the bias
parameter θ which depends on target presence. Specifically,
we set

θ :=
{

0.05 absent
0.2 present

Importantly, our qualitative results of slower and less con-
fident decisions about absence hold for any choice of θ such
that 0 < θabsent < θpresent < 0.5, because, for values within
this range, positive evidence (that is, sampling a 1) is more
informative than negative evidence (that is, sampling a 0).
For example, for the values we use here, after sampling a 0
an agent should update their subjective belief that a target is
present only by a small amount, from 0.5 to 0.46. In contrast,
after sampling a single 1, belief update is much steeper: from
0.5 to 0.8.

Agents need to infer target presence from noisy observa-
tions. Their belief state can therefore be described as the log
likelihood ratio LLR between target presence and absence,
which they update following each sample.

LLRt = ∑
t
i=1log

p(oi|θ̄presence)

p(oi|θ̄absence)

Where

p(oi = 1|θ̄) = θ̄

With θ̄ being the assumed value of θ in the agent’s internal
model of their perception (in all our simulations, θ̄ = θ). The
probability that a target is present given the evidence so far is
then:

p(present|Ot) =
eLLRt

1+ eLLRt

With Ot being the entire stream of evidence until time point
t. And, assuming that, at the time of committing to a decision,
the agent decides “present” if and only if p(present|O)> 0.5,
the probability of being correct at that time point is:

p(correct|DECIDE,Ot)=max(p(present|Ot),1− p(present|Ot))

When following the optimal policy, the expected value at
time point t equals the probability of being correct, unless the
value of additional evidence outweighs the discount factor γ:

E(V |Ot) = max(p(correct|Ot),

p(1|Ot)γE(V |[Ot ,1])+ p(0|Ot)γE(V |[Ot ,0]))

Where E(V |[Ot ,1]) is the expected value at time point t+1,
assuming the next sample is 1, and p(1|Ot) is the probability
that the next sample will be 1, marginalized over target pres-
ence and absence (similar for 0).



Finally, confidence ratings are modeled as the estimated
probability of being correct when committing to a decision.

To find the optimal policy (the one that maximizes the Bell-
man equation), we used backward induction with a horizon
of 100 time points (Callaway, Griffiths, Norman, & Zhang,
2023; Puterman, 2014). We then simulated 4000 trials to ob-
tain predictions for a rational decision-maker.

An ideal observer model successfully reproduced the be-
havioural asymmetries in decision times and confidence: re-
sponse times were shorter for correct “target present” deci-
sions (mean = 12.81 time points until decision) than for cor-
rect “target absent” decisions (mean = 18.25 time points).
Second, subjective confidence was higher in correct decisions
about presence (mean = 0.91) than absence (mean = 0.89;
Fig. 3B). Finally, and in line with participants’ behaviour, the
model was biased to report target absence (0.52 of all simu-
lated responses) despite having an accurate prior about a letter
being present in exactly half of the trials. These behavioural
asymmetries emerged not due to an asymmetric prior or in-
centive structure, but due to asymmetries in the likelihood
function going from world states to perceptual input.

Modeling occlusion effects We simulate stimulus occlu-
sion as a scaling of the probability of obtaining positive evi-
dence by a parameter α∈ [0,1]. Similar to θpresent and θabsent ,
α is paralleled by a metacognitive variable, ᾱ, which corre-
sponds to participants’ beliefs about the the effects of occlu-
sion on stimulus visibility. This way of defining occlusion
has three notable characteristics. First, the relative effect of
occlusion on the probability of sampling a 1 (α) is much more
pronounced than its positive effect on the probability of sam-
pling a 0 ( 1−αθ

1−θ
). For example, for the case of θ = 0.1 and

α = 0.7, occlusion reduces the probability of sampling a 1 by
a factor of 1.43, but increases the probability of sampling a 0
by a factor of 1.03 only.

Second, the informativeness of obtaining positive evi-
dence, quantified as the log likelihood ratio between target
presence and absence following a 1, is unaffected by beliefs
about the effects of occlusion on visibility, ᾱ:

LLR[1] = log
p(1|present)
p(1|absent)

= log
ᾱθ̄present

ᾱθ̄absent
= log

θ̄present

θ̄absent

And third, the informativeness of obtaining negative evi-
dence, quantified as the log likelihood ratio between target
presence and absence following a 0, approaches 0 with lower
values of ᾱ, as if the model considers the probability that ev-
idence would have been obtained if a target was present:

|LLR[0]|= |log
p(0|present)
p(0|absent)

|=

|log
1− ᾱθ̄present

1− ᾱθ̄absent
|< |log

1− θ̄present

1− θ̄absent
|

Together, we get a double dissociation. Occlusion affects
the probability of obtaining positive evidence, but beliefs

about occlusion have no effect on the interpretation of such
evidence once obtained. On the other hand, occlusion has lit-
tle effect on the probability of obtaining negative evidence,
but beliefs about the effects of occlusion affect the interpreta-
tion of such evidence once obtained. As a result, timing and
confidence in decisions about absence depend much more on
beliefs about the effect of occlusion than on the true effect of
occlusion on visibility.

In the following simulation we had two occlusion levels;
one where α = 1 (easy condition) and one where α = 0.7
(hard condition). To illustrate the effects of beliefs about vis-
ibility on perceptual decisions, we present the results of two
simulated agents: Vincorp is an ideal observer who incorpo-
rates accurate beliefs about the expected effect of occlusion
on visibility into perceptual decisions (ᾱ = α), and Vignore is
an observer who ignores the expected effects of occlusion on
visibility, interpreting perceptual evidence similarly in both
levels of occlusion (ᾱ = 0.85 for both hard and easy condi-
tions). For both agents, we found the optimal policy (given
their beliefs) using backward induction, and simulated 4000
trials to obtain predictions (Fig. 4, left and middle columns).

The two model variants predict different effects of occlu-
sion on accuracy, decision times and confidence ratings. This
is especially evident in target-absent trials (red lines in Fig.
4). While occluding more of the display made Vincorp com-
mit more false-alarms, it made Vignore make fewer of them.
Vincorp’s decisions about absence were slower when more of
the display was occluded, whereas Vignore’s decisions about
absence were faster. Finally, Vincorp was less confident in
decisions about absence when more of the display was oc-
cluded, but this was not true of Vignore. Together, both the
size and direction of occlusion effects on perceptual decisions
were dependent on meta-perceptual knowledge about the in-
fluence of occlusion on visibility, or the incorporation of such
knowledge into perceptual decisions.

Measuring Occlusion effects Equipped with an ideal-
observer model of perceptual detection under partial stimulus
occlusion, we now return to describe human data. As ex-
pected, hit rate (the probability of a “target present” response
in target-present trials) was reduced by occlusion (t(233) =
11.83, p < .001), with a mean hit rate of 0.78 (SD= 0.11)
when 2 rows of pixels were occluded, versus 0.66 (SD= 0.12)
when 6 rows of pixels were occluded. Unsurprisingly, oc-
cluding more of the target made it more difficult to spot.

Next, we asked whether stimulus occlusion affected the
timing and confidence with which participants detected let-
ters. Correct “target present” decisions were slowed down
by pixel occlusion (1.92 vs 2.05 seconds for 2 or 6 occluded
rows; t(233) = −5.13, p < .001). Similarly, confidence in
correct “target present” decisions was lower when more of
the display was occluded (0.94 vs. 0.92 on a 0.5-1 scale;
t(233) = 9.87, p < .001).

Having established that occlusion affected stimulus visi-
bility, making responses slower, less accurate, and less cer-
tain, when a target was present, we examined the effects of



Figure 4: Simulated predictions and empirical data for the
effects of occlusion on error rate (panel A), subjective confi-
dence (panel B), and reaction time (panel C). Agent V-incorp
used metacognitive knowledge of the effect of occlusion on
visibility, but agent V-ignore did not. Error bars represent the
standard error of the mean. *: p<0.05 ***: p<0.001

occlusion on detection responses in the absence of a target.
As per our modelling above, the effects of occlusion on de-
cisions about absence reveal not only how occlusion affects
visibility (modelled as α), but also how it affects counterfac-
tual visibility: the expected visibility of a stimulus that is
in fact absent (closely related to ᾱ in the model). Consis-
tent with the predictions for Vincorp, but not Vignore, occluding
more of the display resulted in an increase in the false-alarm
rate (0.13 versus 0.15 for 2 or 6 occluded rows, respectively;
t(233) = −2.26, p = .025): participants were more likely to
accept that they might have missed the target when more of
the stimulus was occluded. Similarly, occlusion had a nega-
tive effect on confidence in absence (0.93 vs. 0.91; t(233) =
10.54, p < .001). However, and in contrast to the predic-
tions for both model variants Vincorp and Vignore, occlusion
had no effect, positive or negative, on the speed of decisions
about absence (2.34 vs 2.33 seconds for 2 or 6 occluded rows;
t(233) = 0.79, p = .429. BF10 = 9.97× 10−2). Moreover,
the effect of occlusion on response times was significantly
stronger in “target present” compared to “target absent” re-
sponses (t(233) = −4.68, p < .001), also when incorporat-
ing incorrect responses into the analysis (t(233) = −3.89,
p < .001).
Individual differences in counterfactual perception Oc-
clusion affected the false-alarm rate and subjective confi-
dence in a way that is consistent with the incorporation of
counterfactual visibility into inferences about absence, but
the absence of an effect on decision time was inconsistent

with both model variants: variant Vincorp predicted a positive
effect, and variant Vignore a negative one. We considered the
possibility that this null group-level result may reflect popula-
tion variability in the incorporation of beliefs about visibility
into perceptual decisions, with some behaving more in line
with the prediction of model Vincorp, incorporating counter-
factual visibility into their perceptual decisions about absence
and slowing down when more of the display is occluded, and
others more in line with the predictions of model Vignore, un-
derestimating the effect of occlusion on stimulus visibility or
ignoring it altogether, resulting in speedier decisions about
absence for more occluded displays.

This population-mixture model makes two unique predic-
tions. First, despite a group-level null effect, some individual
participants should show reliable effects of occlusion on “tar-
get absent” reaction times: negative for some participants,
and positive for others. And second, participants who slow
down when more of the display is occluded should, paradoxi-
cally, make more false alarms in this condition (see Fig. 4, red
lines in panels A and C). Notably, this correlation is the exact
opposite of what is expected from a speed-accuracy trade-off.

To test the first hypothesis, we collected a large number
of test trials (between 672 and 894) from a randomly-chosen
subset of participants who took part in previous experiments.
We present here the combined results from two cohorts of
participants. The first cohort participated in a long version of
the experiment described above, without confidence ratings.
For the second cohort, the central stimulus was flanked by
two target-present stimuli, to be used as a visual reference for
the effect of occlusion on visibility.

The high number of trials per participant allowed us to
quantify the consistency of the effect of occlusion on target-
absent RTs within individual participants. For each partici-
pant, we compared their target-absent response times in high-
and low- occlusion trials with a t-test. If decision times were
invariant to the effect of stimulus occlusion, this would be ex-
pected to result in a significant test statistic in 1 out of 20 par-
ticipants, on average, corresponding to our significance level
of 0.05. Strikingly, however, out of 20 participants the effect
of occlusion on “target absent” decision times was signifi-
cant in 8, split exactly half-half between significant positive
effects (more consistent with model variant Vincorp) and sig-
nificant negative effects (more consistent with model variant
Vignore): much higher than the 1/20 probability expected by
chance alone (p < 0.001 in a binomial test against p = 0.05).

As a more sensitive test of effect reliability, we employed
the non-parametric sign-consistency test (Yaron, Faivre, Mu-
drik, & Mazor, 2023): randomly splitting individual partici-
pants’ trials into two subsets, and asking whether both sub-
sets demonstrate the same type of outcome: either positive or
negative (see Fig. 5). The group-level mean sign-consistency,
or the proportion of these random splits where the same out-
come is observed in both subsets, is then compared against a
bootstrapped null distribution to obtain a group-level p-value.

In both experiments we find clear evidence for above-



Figure 5: Sign consistency results in Exp. 1 (left) and
2 (right). Within each panel, we present median RT as a
function of occlusion level for each participant on the left.
Color saturation indicates sign-consistency. On the right, we
present individual sign-consistency scores as circles, along-
side the group-average sign consistency score (horizontal
line), overlaid on top of the non-parametric null distribution.
In both experiments, group-level sign-consistency was signif-
icantly above chance for the effect of occlusion on response-
time in target-absent trials. **: p<0.01, ***: p<0.001

chance sign-consistency in the effects of occlusion on target-
absent reaction times (Exp. 1: sign consistency=0.72, p=
.003; Exp. 2: sign consistency=0.86, p< .001; see Fig.
5). Moreover, target-absent sign-consistency scores were
not significantly different from, and numerically higher than,
target-present sign-consistency scores (Exp. 1: sign con-
sistency=0.63; Exp. 2: sign consistency=0.76). An effect
of counterfactual visibility on “target absent” response times
was not absent: it was masked by differences between indi-
vidual participants who systematically exhibit opposing in-
fluences.

Turning to the second prediction of the population-mixture
model, we measured the correlation between the effect of oc-
clusion on “target absent” decision times and the false-alarm
rate. In both cohorts, we find that subjects who waited for
longer before inferring absence when more of the display was
occluded committed more false alarms in the high-occlusion
condition (Exp. 1: r =.41; Exp. 2: r =.69; analyzed together:
r = .55, 95% CI [.14, .80], t(18) = 2.80, p = .012). Impor-
tantly, this is not due to variability in the perceptual effect of
occlusion on visibility (for comparison, we find no reliable
correlation between the effect of occlusion on target-present
reaction times and the hit rate; r =−.20, 95% CI [−.59, .26],
t(18) =−0.89, p = .388). Instead, we argue that this correla-
tion reflects variability in the use of counterfactual visibility
to inform perceptual decisions in the absence of a target.

Discussion
Occlusion affects not only the visibility of objects, but also
the counterfactual visibility of absent objects: how visible

they would have been had they been present. Here, to pin-
point the roles of counterfactual visibility in perceptual deci-
sion making, we asked whether occlusion had similar effects
on perceiving stimuli and their absence. Below we summarise
the three main contributions of this paper.

First, we provide an ideal observer model of perceptual de-
tection. This model traces presence-absence asymmetries in
reaction time and confidence to asymmetries in the informa-
tion value of positive and negative evidence in a detection set-
ting. The model also formalises the argument that metacog-
nitive beliefs about perception have a key role in decisions
about absence (Kanai, Walsh, & Tseng, 2010; Mazor, 2021).

Second, we find evidence for the incorporation of counter-
factual visibility into perceptual decisions in the absence of
a target, as well as subjective confidence in such decisions.
Using reverse correlation, we further show that timing and
confidence have strikingly different origins in decisions about
presence and absence: available perceptual evidence versus
beliefs about the availability of counterfactual evidence.

Finally, the effect of occlusion on “target absent” decision
times was reliably variable across individuals. Computational
modelling suggests that this variability is related to individual
differences in beliefs about perception, or in the incorpora-
tion of such beliefs into perceptual decisions, raising ques-
tions regarding associations with reasoning about counterfac-
tuals outside perception (Byrne & Tasso, 1999; Hsu, Horng,
Griffiths, & Chater, 2017), susceptibility to expectation ef-
fects on perception (Kok, Brouwer, Gerven, & Lange, 2013;
Powers, Mathys, & Corlett, 2017; Press, Kok, & Yon, 2020),
and meta-perceptual knowledge (Levin & Angelone, 2008;
Recht, Gardelle, & Mamassian, 2021; Scholl, Simons, &
Levin, 2004).

Our results fit within the broader project of understanding
perception as probabilistic inference on noisy sensory data.
Much focus has been placed on the role of prior expecta-
tions in perceptual inference (Kok et al., 2013; Press et al.,
2020; Summerfield & Egner, 2009; Yon, Zainzinger, Lange,
Eimer, & Press, 2021), with important discussions regarding
the (im)penetrability of visual perception to such effects from
cognition (Firestone & Scholl, 2016; Pylyshyn, 1999). Here
we focus on the other component of Bayesian reasoning, of-
ten neglected in such discussions: the likelihood function go-
ing from world states to sensory input. Unlike prior expec-
tations about the world (e.g., the probability that a letter will
be present), these likelihood functions describe the percep-
tual system itself (e.g., the probability that I would perceive
the letter when it is present). As we show here, such beliefs
affect not only metacognitive confidence ratings, but also de-
cision times and decision criteria of the detection judgments
themselves, revealing a complex web of interactions between
perception, cognition, and metacognition.
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