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Having an internal model of one’s attention can be useful for effectively managing limited perceptual and
cognitive resources. While previous work has hinted at the existence of an internal model of attention, it is
still unknown how rich and flexible this model is, whether it corresponds to one’s own attention or to a
generic person-invariant schema, and whether it is specified as a list of facts and rules or alternatively as
a probabilistic simulation model. To this end, we tested participants’ ability to estimate their own behavior
in a visual search task with novel displays. In six online experiments (four pre-registered), prospective search
time estimates reflected accurate metacognitive knowledge of key findings in the visual search literature,
including the set-size effect, higher efficiency of color over conjunction search, and the asymmetric contri-
butions of target and distractor identities to search difficulty. In contrast, estimates were biased to assume
serial search, and demonstrated little to no insight into sizeable effects of search asymmetries for basic visual
features, and of target-distractor similarity. Together, our findings reveal a complex picture, where internal
models of visual search are sensitive to some, but not all, of the factors that make some searches more diffi-
cult than others.
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In order to efficiently interact with the world, agents construct
mental models: simplified representations of the environment and
of other agents that are accurate enough to generate useful predic-
tions and handle missing data (Forrester, 1971; Friston, 2010;
Tenenbaum et al., 2011). For example, participants’ ability to predict
the temporal unfolding of physical scenes has been attributed to an
“intuitive physics engine”: a simplified model of the physical world
that uses approximate, probabilistic simulations to make rapid infer-
ences (Battaglia et al., 2013). Similarly, having a simplifiedmodel of
planning and decision-making allows humans to infer the beliefs and
desires of other agents based on their observed behavior (Baker et al.,
2011). Finally, in motor control, an internal model of one’s motor
system and body allows subjects to monitor and control their body
(Wolpert et al., 1995). This internal forward model has also been

proposed to play a role in differentiating self and other (Blakemore
et al., 1998). In recent years, careful experimental and computational
work has advanced our understanding of these internal models: their
scope, the abstractions that they make, and the consequences of these
abstractions for faithfully and efficiently modeling the environment.

Agents may benefit from having a simplified model not only of the
environment, other agents, and their motor system, but also of their
own perceptual, cognitive, and psychological states. For example, it
has been suggested that knowing which items are more subjectively
memorable is useful for making negative recognition judgments (“I
would have remembered this object if I saw it,” Brown et al.,
1977). Similarly, children guided their decisions and evidence accu-
mulation based on model-based expectations about the perception
of hidden items (Siegel et al., 2021). In the context of perception
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and attention, Graziano andWebb (2015) argued that having a simpli-
fied Attention Schema—a simplified model of attention and its
dynamics—is crucial for monitoring and controlling one’s attention,
similar to how a body schema supports motor control.
Indeed, people are not only capable of predicting the temporal

unfolding of physical scenes, or the behavior of other agents, but
also the workings of their own attention under hypothetical scenar-
ios. In one study, participants held accurate beliefs about the serial
nature of visual search for a conjunction of features, and the parallel
nature of visual search for a distinct color (Levin & Angelone,
2008). Similarly, the majority of third graders knew that the addi-
tion of distractors makes finding the target harder, particularly if
the distractors and target are of the same color (Miller & Bigi,
1977). These and similar studies established the existence of meta-
cognitive knowledge about visual search, as a result raising new
questions about its structure, limits, and origins. We identify
three such open questions. First, do internal models of visual search
represent search difficulty along a gradient, or alternatively classify
search displays as being either parallel or serial? Second, to what
extent is knowledge about visual search learned or calibrated
based on first-person experience? And third, are internal models
of visual search structured as a list of facts and laws, or as an
approximate probabilistic simulation?
Here we take a first step toward providing answers to these three

questions, using visual search as our model test case for internal mod-
els of perception and attention more generally. Participants estimated
their prospective search times in visual search tasks and then per-
formed the same searches. Similar to using colliding balls (Smith &
Vul, 2013) and falling blocks (Battaglia et al., 2013) to study intuitive
physics, here we chose visual search for being thoroughly studied and
for following robust behavioral laws. In Experiments 1 and 2, we used
simple colored shapes as our stimuli, and compared participants’
internal models to scientific theories of attention that distinguish par-
allel from serial processing.We found that participants represented the
relative efficiency of different search tasks, but had a persistent bias to
assume serial search. In Experiments 3 and 4, we used unfamiliar
stimuli from the Omniglot dataset (Lake et al., 2011) with the purpose
of testing the richness and compositional nature of participants’ inter-
nal models, and their reliance on person-specific knowledge. We find
that participants are capable of predicting their search times, even for
novel stimuli. Furthermore, we show that for complex stimuli, internal
models of visual search are better fitted to one’s own search behavior
compared with the search behavior of other participants. Finally, in
Experiments 5 and 6, we find important limitations of these models:
they fail to represent asymmetries between searching for the presence
or absence of basic visual features, and are blind to the effects of
semantic target-distractor similarity on search difficulty. Together,
we find that people are capable of estimating the relative search diffi-
culty of previously unseen searches, but that this ability is limited by
having only partial insight into the many factors that affect visual
search.

Experiments 1 and 2: Shape, Orientation, and Color

An internal model of visual search may take a similar form to that
of a scientific theory, by specifying an ontology of concepts and a set
of causal laws that operate over them (Gerstenberg & Tenenbaum,
2017; Gopnik & Meltzoff, 1997). For example, participants may
hold an internal model of visual search that is similar to Anne

Treisman’s Feature Integration Theory. According to this theory,
visual search comprises two stages: a pre-attentive parallel stage,
and a serial-focused attention stage (Treisman, 1986; Treisman &
Sato, 1990). In the first stage, visual features (such as color, orienta-
tion, and intensity) are extracted from the display to generate spatial
“feature maps.” Targets that are defined by a single feature with
respect to their surroundings can be located based on these feature
maps alone ( feature search; for example, searching for a red car
in a road full of yellow taxis). Since the extraction of a feature
map is pre-attentive, in these cases search can be completed imme-
diately. In contrast, sometimes the target can only be identified by
integrating over multiple features (conjunction search; for example,
if the road has not only yellow taxis, but also red buses). In such
cases, attention must be serially deployed to items in the display
until the target is identified.

A simplifying assumption of Feature Integration Theory is that
there is no transfer of information between the pre-attentive and
focused attention stages. In other words, observers cannot selec-
tively direct their focused attention to items that produced strong
activations in the pre-attentive stage. Guided Search models
(Wolfe, 1994, 2021; Wolfe et al., 1989) assume instead that partic-
ipants use these pre-attentive guiding signals in their serial search.
Compared to Feature Integration Theory, Guided Search models
provide a much better fit to empirical data, at the expense of
being more complex and rich in detail. To date, it is unknown
where internal models of visual search fall on this performance-
complexity trade-off: do people differentiate between parallel
and serial searches like in Feature Integration Theory, or do they
represent search difficulty on a continuum, more like Guided
Search?

In Experiments 1 and 2, we used stimuli that lend themselves to a
categorical distinction between parallel and serial search: simple
geometrical shapes of different colors and orientations. We asked
whether participants’ internal models of visual search predict
which search displays demand serial deployment of attention and
which do not. Critically, participants gave their search time estimates
before they were asked to perform searches involving these or sim-
ilar stimuli, so their search time estimates reflected prior beliefs
about search efficiency. Experiment 2 was designed to replicate
and generalize the results of Experiment 1 to a new stimulus dimen-
sion (orientation) and distractor set sizes. Our hypotheses and anal-
ysis plan for Experiment 2, based on the results of Experiment 1,
were pre-registered prior to data collection (pre-registration docu-
ment: https://doi.org/10.17605/OSF.IO/2DPQ9). Raw data, experi-
ment demos, and full analysis scripts are available at https://github
.com/matanmazor/metaVisualSearch.

Participants

Experiments were approved by the Massachusetts Institute of
Technology Committee on the Use of Humans as Experimental
Subjects under protocol 0812003014. All participants gave their
informed consent prior to participating. For Experiment 1, 100 par-
ticipants were recruited from Amazon’s crowdsourcing web service
Mechanical Turk. Experiment 1 took about 20 min to complete.
Each participant was paid $2.50. The highest performing 30% of
participants received an additional bonus of $1.50. For
Experiment 2, 100 participants were recruited from the Prolific
crowdsourcing web service. The experiment took about 15 min to

MAZOR, SIEGEL, AND TENENBAUM2

https://doi.org/10.17605/OSF.IO/2DPQ9
https://doi.org/10.17605/OSF.IO/2DPQ9
https://doi.org/10.17605/OSF.IO/2DPQ9
https://doi.org/10.17605/OSF.IO/2DPQ9
https://doi.org/10.17605/OSF.IO/2DPQ9
https://github.com/matanmazor/metaVisualSearch
https://github.com/matanmazor/metaVisualSearch
https://github.com/matanmazor/metaVisualSearch


complete. Each participant was paid £1.5. The highest performing
30% of participants received an additional bonus of £1.

Procedure

The study was built using the Lab.js platform (Henninger et al.,
2019) and hosted on a JATOS server (Lange et al., 2015). Demo ver-
sions of all six experiments are available at https://github.com/
matanmazor/metaVisualSearch.

Familiarization

First, participants were acquainted with the visual search task. The
instructions for this part were as follows:

In the first part, you will find a target hidden among distractors. First, a
gray cross will appear on the screen. Look at the cross. Then, the target
and distractors will appear. When you spot the target, press the spacebar
as quickly as possible. Upon pressing the spacebar, the target and dis-
tractors will be replaced by up to five numbers. To move to the next
trial, type in the number that replaced the target.

The instructions were followed by four trials of an example visual
search task (searching for a T among 7 Ls). Feedback was delivered
on speed and accuracy. The purpose of this part of the experiment
was to familiarize participants with the task.

Estimation

After familiarization, participants estimated how long it would
take them to perform various visual search tasks involving novel
stimuli and various set sizes. On each trial, they were presented
with a target stimulus and a display of distractors and were asked
to estimate how long it would take them to find the target if it was
hidden among the distractors (see Figure 1).
To motivate accurate estimates, we explained that these visual

search tasks will be performed in the last part of the experiment,
and that bonus points will be awarded for trials in which participants
detect the target as fast or faster than their search time estimate. The
number of points awarded for a successful search changed as a func-
tion of the estimate given for the same search, such that more points
were offered for riskier estimates. In order to meaningfully compare
estimates for different searches, it was important that any tendency to
produce risky or conservative estimates is conserved across all
searches. To achieve that, the number of points offered for a success-
ful search was set to 10/√estimate. We chose this rule because, for
right-skewed log-normal reaction time distributions, an optimal
strategy is to consistently choose an estimate that is aligned with
the 70th quantile of the estimated RT distribution (see Appendix).
The report scale ranged from 0.1 to 4 s.
After one practice trial (estimating search time for finding one T

among three randomly positioned Ls), we turned to our stimuli of
interest. In Experiment 1, participants estimated how long it would
take them to find a red (#FF5733) square among green (#16A085)
squares (color condition), red circles (shape condition), and a mix
of green squares, red circles, and green circles (shape-color conjunc-
tion condition), for set sizes 1, 5, 15, and 30. Together, participants
estimated the expected search time of 12 different search tasks (see
Figure 1, upper right panel). In Experiment 2, participants rated how
long it would take them to find a red tilted bar (20° off vertical)
among green titled bars (color condition), red vertical bars

(orientation condition), and a mix of green tilted and red vertical
bars (orientation-color conjunction condition) for set sizes two,
four, and eight. Together, participants estimated the expected search
time of nine different search tasks (see Figure 1, lower right panel).
In both experiments, the order of estimation trials was randomized
between participants.

Visual Search

Participants performed three consecutive search tasks for each of
the 12 (Experiment 1) or 9 (Experiment 2) search types. The order of
presentation was randomized between participants. No feedback was
delivered about speed. To motivate accurate responses, error trials
were followed by a 5-s pause.

Results

Accuracy in the visual search task was reasonably high in both
Experiments (Experiment 1: M= 0.93, 95% CI [0.90, 0.96];
Experiment 2:M= 0.82, [0.77, 0.87]). Error trials and visual search
trials that took shorter than 200 ms or longer than 5 s were excluded
from all further analyses. Participants were excluded if more than
30% of their trials were excluded based on the aforementioned cri-
teria, leaving 89 and 74 participants for the main analysis of
Experiments 1 and 2, respectively.

Search Times

For each participant and distractor type, we extracted the slope
of the function relating RT to distractor set size. As expected,
search slopes for color search were not significantly different from
zero in Experiment 1, (−0.40 ms/item; t[88]= − 0.45, p= .652,
BF01= 7.74) and Experiment 2 (0.51 ms/item; t[73]= 0.07,
p= .946, BF01= 7.80). This is consistent with color being a basic
feature that is not dependent on serial attention for its extraction
by the visual system (Treisman, 1986; Treisman & Sato, 1990).
The slope for shape search was close, but significantly higher than
zero (5.66 ms/item; t[88]= 4.35, p, .001), and the slope for orien-
tation was numerically higher than zero (11.05 ms/item) but not sig-
nificantly so (t[73]= 1.50, p= .139, BF01= 2.70). In both
Experiments, conjunction search gave rise to search slopes signifi-
cantly higher than zero (Experiment 1: 14.80 ms/item, t[88]=
9.16, p, .001; Experiment 2: 72.14 ms/item, t[73]= 7.50,
p, .001; see Figure 2).

Estimation Accuracy

We next turned to analyze participants’ prospective search time
estimates, and their alignment with actual search times. In both
Experiments, participants generally overestimated their search
times. This was the case for all search types across the two
Experiments (see Figure 2, left panels). This is expected, based on
our bonus scheme that incentivized conservative estimates (see
Appendix). Despite this bias, estimates were correlated with true
search times, supporting a metacognitive insight into visual search
behavior (see Figure 2, left panels; within-subject Spearman corre-
lations, Experiment 1: M= 0.28, 95% CI [0.21, 0.35], t[88]=
7.77, p, .001; Experiment 2: M= 0.16, [0.07, 0.26], t[73]=
3.48, p= .001).
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To test participants’ internal models of visual search, we analyzed
their estimates as if they were search times, and extracted estimation
slopes relating estimates to the number of distractors in the display
(see Figure 2, right panels). Estimation slopes (expected ms/item)
were steeper than search slopes for all search types. In particular,
although search time for a deviant color was unaffected by the num-
ber of distractors, participants estimated that color searches with
more distractors should take longer (mean estimated slope in
Experiment 1: 17.76 ms/item; t[88]= 6.35, p, .001; in
Experiment 2: 29.43 ms/item; t[73]= 2.63, p= .010). In other
words, at the group level, participants showed no metacognitive
insight into the parallel nature of color search.
Although they were significantly different from zero, in both

Experiments estimation slopes for color search were significantly
shallower than for conjunction search (Experiment 1: t[88]= 4.08,
p, .001, Experiment 2: t[73]= 3.87, p, .001). In contrast,
although true search slopes were shallower for shape and orientation

than for conjunction ( p’s, .001), the difference in estimation
slopes was not significant (difference between shape and conjunc-
tion slopes: t[88]= 1.65, p= .103; difference between orientation
and conjunction slopes: t[73]= 1.18, p= .244).

Experiments 3 and 4: Complex, Unfamiliar Stimuli

In Experiments 1 and 2, an internal model of visual search
allowed participants to accurately estimate how long it would take
them to find a target stimulus in arrays of distractor stimuli.
Participants had insight into the set-size effect and into the fact
that conjunction searches are more difficult than color searches.
Positive color search slopes that are nevertheless significantly shal-
lower than conjunction search slopes further suggested a graded rep-
resentation of search efficiency, but no awareness of the possibility
of parallel processing of preattentive basic features. An alternative
interpretation is that a gradient of positive search slopes emerges

Figure 1
Experimental Design

Note. Participants first performed five similar visual search trials and received feedback about their speed and accuracy. Then, they were asked to estimate the
duration of novel visual search tasks. Bonus points were awarded for accurate estimates, and more points were awarded for risky estimates. Finally, in the visual
search part, participants performed three consecutive trials of each visual search task for which they gave a search time estimate. (Right Panels) Stimuli used for
Experiments 1 and 2. See the online article for the color version of this figure.
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due to a group averaging effect of individual dichotomous represen-
tations. If some participants represent color search as parallel, and
others as equally difficult as conjunction search, the mean slope
for color search would be higher than zero and significantly lower
than for conjunction search.
In Experiments 3 and 4, we addressed this possibility and further

asked how rich this model is, by using displays of complex stimuli
with which participants are unlikely to have any prior experience
(letters from a medieval Alphabet and from the Futurama TV series,
hand drawn by Mechanical Turk workers). Here, insight into the set
size effect and its absence in feature searches would not be useful for
generating accurate search time estimates. Instead, participants’
internal model of visual search must be capable of extracting rele-
vant features from rich stimuli, and using these features to generate
graded stimulus-specific predictions. Using these more complex

stimuli further allowed us to ask if search-time estimates rely on
person-specific knowledge, as subjects are expected to vary
more in their search behavior in more complex displays.
Experiment 4 followed Experiment 3 and was pre-registered (pre-
registration document: https://doi.org/10.17605/OSF.IO/DPRTK).
Raw data, experiment demos, and full analysis scripts are available
at https://github.com/matanmazor/metaVisualSearch.

Participants

For Experiment 3, 100 participants were recruited from the
Prolific crowdsourcing webservice. The experiment took about
15 min to complete. Participants were paid £1.5. The highest per-
forming 30% of participants received an additional bonus of £1.
For Experiment 4, 200 participants were recruited from the Prolific

Figure 2
Results From Experiments 1 and 2

Note. (Left Panels) Median actual and estimated search times as a function of set size for the different search types
(coded by color). Error bars represent the standard error of the median, estimated with bootstrapping. (Right Panels)
Distribution of search slopes for actual and estimated search types. See the online article for the color version of this
figure.
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crowdsourcing webservice. We recruited more participants for
Experiment 4 in order to have sufficient statistical power for our
inter-subject correlation analysis. The experiment took about
8 min to complete. Participants were paid $1.27. The highest per-
forming 30% of participants received an additional bonus of $0.75.

Procedure

The procedure for Experiments 3 and 4 was similar to that of
Experiment 1 with several changes.
Stimuli were letters drawn by Mechanical Turk workers (Lake

et al., 2011), instead of geometrical shapes (see Figure 3). In
Experiment 3, we used letters from the Alphabet of the Magi. In
Experiment 4, we used letters from the Futurama television series
as well as Latin letters. We explained to participants that they will
search for a specific letter (the target letter) among copies of
another letter (the distractor letter). In Experiment 3, both
target and distractor were letters from the Alphabet of the Magi,
and distractors were drawn by different Mechanical Turk workers.
In Experiment 4, on half of the trials, the target was a Latin
letter and distractors were Futurama letters, and on the other
half the target was a Futurama letter and distractors were Latin let-
ters. In these experiments, distractors were copies of the same let-
ter drawn by the same Mechanical Turk worker. This was
important for our visual search asymmetry analysis (see below).
In the familiarization part, we used as target and distractors two

letters from the Alphabet of the Magi (Experiment 3) and two let-
ters from the Futurama alphabet (Experiment 4). Importantly, these
letters were only used for training and did not appear in the
Estimation or Visual search parts. In the estimation part, partici-
pants gave search time estimates for eight search tasks, all involv-
ing 10 distractors, and in the visual search part, they performed

these search tasks. To minimize random variation in spatial config-
urations (which was important for the search asymmetry analysis),
in Experiment 4, letters appeared on an invisible clock face.
Finally, the report scale ranged from 0.1 to 4 s in Experiment 3
and to 2 s in Experiment 4.

Results

Accuracy in the visual search task was high in both experiments
(Experiment 3: M= 0.89, 95% CI [0.86, 0.92]; Experiment 4: M=
0.97, [0.96, 0.98]). Error trials and visual search trials that took shorter
than 200 ms or longer than 5 s were excluded from all further analyses.
Participants were excluded if more than 30% of their trials were
excluded based on the aforementioned criteria, leaving 88 and 200 par-
ticipants for the main analysis of Experiments 3 and 4, respectively.

Estimation Accuracy

In both experiments, search time estimates were positively cor-
related with true search times (within-subject Spearman correla-
tions in Experiment 3: M= 0.44, 95% CI [0.37, 0.52], t[86]=
12.16, p, .001; Experiment 4: M= 0.10, [0.05, 0.15], t[191]=
3.67, p, .001; see Figures 4 and 5A). The correlation between
search time and search time estimates was significantly weaker
in Experiment 4 (ΔM= 0.35, [0.26, 0.43], t[181.02]= 7.60,
p, .001). This difference in correlation strength is likely the
result of a narrower range of search times in Experiment 4 (with
median search times 566–684 ms, per display) than in
Experiment 3 (649–1,615 ms), increasing the relative contribution
of measurement noise to search times, and attenuating correlations
as a result. Indeed, the mean Spearman correlation between the
search times of a given participants and the median search times

Figure 3
Stimuli Used in Experiments 3 and 4

Note. In Experiment 3, stimuli were characters from the Alphabet of the Magi, drawn by different Mechanical
Turk users. In Experiment 4, stimuli were characters from the Latin and Futurama alphabets, presented on an invis-
ible clock face, and drawn by the same Mechanical Turk user. Stimulus pairs 1–4 and 5–8 are identical except for
the target assignment.
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of all other participants, a measure of the noisiness of the data that
is independent of search time estimates, dropped from 0.74 in
Experiment 3 to 0.29 in Experiment 4 (t[284.57]= 14.36,
p, .001).

Importantly, in both experiments all searches involved exactly 10
distractors, so a positive correlation could not be driven by the effect
of distractor set size. Furthermore, since participants had no prior
experience with our stimuli, their estimates could not have been
informed by explicit knowledge about specific letters (“The third let-
ter in the Alphabet of the Magi pops out to attention when presented
between instances of the fourth letter” or “the fifth letter in the
Futurama Alphabet is difficult to find when presented among ds”).
These positive correlations reveal a more intricate knowledge of
visual search. Our next two analyses were designed to test whether
estimates were based on person-specific knowledge, and whether
their generation involved a simulation of the search process.

Cross-Participant Correlations

We chose unfamiliar letters as stimuli for Experiments 3 and 4 in
order to make heuristic-based estimation more difficult, and to
encourage an introspective estimation process. If participants were
using idiosyncratic knowledge about their own attention, we
would expect to find higher correlations between their search time
estimates and their own search times (self–self alignment), compared
towith the search times of a random surrogate participant (self–other
alignment). To test this, we ran a non-parametric permutation test,
comparing self–self and self–other alignment in prospective search
time estimates. In Experiment 3, a numerical difference between
self–self (mean Spearman correlation Mr = 0.44) and self–other
alignment (Mr = 0.41) was marginally significant (pperm = 0.05).
In Experiment 4, we pre-registered this analysis and found a signifi-
cant advantage for self–self alignment compared with self–other
alignment (see Figure 6; mean Spearman correlations for self–self

Figure 4
Estimated Search Times Plotted Against True Search Times in
Experiment 3

Note. The dashed line indicates y= x. Each search task involved searching
for one Omniglot character (top letter) among 10 tokens of a second
Omniglot character, drawn by 10 different MTurk workers (bottom letter).

Figure 5
Results From Experiment 4

Note. (Panel A) Median estimated search times plotted against true search times in Experiment 4. The dashed line indicates y = x. Each search task involved
searching for one character (top letter) among 10 tokens of a different character (bottom letter). In four searches, the target character was from the Latin alphabet
(circles), and in the other four, from the Futurama alphabet (squares). Search pairs that involved the same pair of stimuli with opposite roles are marked by the
same color. (Panel B) Spearman correlations between estimates and search times for true and target-distractor flipped labels in Experiment 4. Spearman cor-
relations significantly dropped, indicating that participants were aware of the effect of target assignment on search time. See the online article for the color
version of this figure.
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Mr = 0.10 and self–otherMr = 0.04, pperm = 0.01). This result can be
interpreted as indicating that at least some of the participants’ inter-
nal model of visual search builds on idiosyncratic knowledge about
their own attention. Alternatively, it may reflect inter-individual dif-
ferences in the perception of complexity and similarity of targets and
distractors. We unpack some implications of these two competing
accounts in the General Discussion section.

Estimation Time

We next looked at the time taken to produce search time estimates
in the estimation part. We reasoned that if participants had to mentally
simulate searching for the target in order to generate their search time
estimates, they would take longer to estimate that a search task will
terminate after, for example, 1,500 compared to 1,000 ms. This is sim-
ilar to how a linear alignment between the degree of rotation and
response time in a mental rotation task was taken as support for an
internal simulation that evolves over time (Shepard & Metzler,
1971). We find no evidence for within-subject correlation between
estimates and the time taken to deliver them, not in Experiment 3 (t
[86]= 0.40, p= .692) and not in Experiment 4 (t[191]= 0.74,
p= .458). However, given that estimation times were three times lon-
ger than search time estimates (median time to estimate= 5 s in
Experiment 3 and 3 s in Experiment 4), a simulation-driven correla-
tionmay have beenmasked byother factors that contributed to estima-
tion times, such as motor control over the report slider.

Visual Search Asymmetry

To keep things simple, internal models of visual search may
make the simplifying assumption that target and distractor stimuli

contribute to search difficulty in similar ways. For example, mod-
els can specify that search time generally inversely scales with the
perceived similarity between the target and distractor stimuli,
without taking into account the different roles target and distrac-
tor play in determining search difficulty. Alternatively, internal
models of visual search may represent the asymmetric nature of
visual search tasks (finding an A among Bs is not the same as
finding a B among As) at the expense of additional model
complexity.

To test whether internal models of visual search were sensitive to
the assignment of stimuli to target and distractor roles, we lever-
aged a well-established phenomenon in visual search: subjects
are generally faster detecting an unfamiliar stimulus in an array
of familiar distractors compared to when the target is familiar
and the distractors are not (Malinowski & Hübner, 2001; Shen &
Reingold, 2001; Zhang & Onyper, 2020). This asymmetry cannot
be captured by a model of visual search that is blind to the assign-
ment of stimuli to target and distractor roles. In Experiment 4, par-
ticipants were presented with pairs of familiar and unfamiliar
letters, and estimated their search time for finding the familiar letter
among unfamiliar distractors and vice versa. This allowed us to test
for visual search asymmetries in search times and in search time
estimates.

As expected, searching for a familiar target among unfamiliar dis-
tractors was more difficult on average, with a difference of 41 ms in
search time (t[199]= 4.41, p, .001). To test if subjects were sensi-
tive to the assignment of stimuli to target and distractor roles, we
extracted individual subjects’ Spearman correlations between search
times and their reciprocal estimates (i.e., the estimate for the same
search with the target and distractor roles inverted). For example,
instead of comparing search times for finding the letter v among
10 square spiral letters (stimulus pair 1) with estimates for the
same search, we compared it with estimates for finding one square
spiral letter among 10 v’s (stimulus pair 5). If estimates were affected
by the assignment of stimuli to target and distractor roles, this inver-
sion should attenuate the correlation, but if visual search estimates
reflected a symmetric notion of similarity the correlation should
not be affected.

Inverting the target/distractor assignment dropped the correlation
between estimates and search time to zero (M= − 0.01, 95% CI
[− 0.06, 0.04]), significantly lower than the original correlation
(MD= 0.10, [0.03, 0.18], t[191]= 2.63, p= .009; see Figure 5B).
This is in contrast to what is expected if search time estimates
reflected symmetric similarity judgments, and in line with an inter-
pretation of our findings as evidence for an internal model of visual
search that is sensitive to the assignment of stimuli to target or dis-
tractor roles.

Interestingly, however, a difference in mean estimated search time
between familiar and unfamiliar targets did not reach statistical sig-
nificance (M= 9.88, 95% CI [− 5.90, 25.66], t[199]= 1.23,
p= .218). A drop in subject-specific Spearman correlations without
a significant difference in mean search times indicates that subjects’
sensitivity to the assignment of stimuli to target and distractor roles
was not fully captured by the metacognitive insight that familiar tar-
gets are more difficult to find. Subjects may have been sensitive to
other visual properties that contributed to search asymmetries. In
Experiment 5, we further explore sensitivity to three such features
that produce robust asymmetries in visual search behavior: orienta-
tion, open edges, and addition of line strokes.

Figure 6
Self-Self Versus Self-Other Alignment

Note. True correlation between estimates and search times (self-self align-
ment, vertical lines) plotted against a null distribution of correlations, when
matching the estimates of each participant with the search time of a random
surrogate participant (self-other alignment).
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Experiment 5: Three Search Asymmetries

In Experiment 4, search time estimates were sensitive to the
assignment of stimuli to target and distractor roles, but not to the
visual search asymmetry for familiar and unfamiliar stimuli. In
Experiment 5, we examined three additional search asymmetries
(line orientation, open edges, and line addition), and asked whether
they are accurately specified in participants’ internal models of
visual search. Experiment 5 was pre-registered (pre-registration
document: https://doi.org/10.17605/OSF.IO/VJQ2F). Raw data,
experiment demos, and full analysis scripts are available at
https://github.com/matanmazor/metaVisualSearch.

Participants

For Experiment 5, 203 participants were recruited from the
Prolific crowdsourcing webservice. The experiment took about
10 min to complete. Participants were paid $1.59. The highest per-
forming 30% of participants received an additional bonus of $1.59.

Procedure

The procedure for Experiment 5 was similar to that of Experiment
1 with several changes.
Participants estimated their prospective search times for three

stimulus pairs. Within each pair, participants provided estimates
for two versions of the search: one where the first stimulus serves
as a target and the second as the distractor, and one where the
roles were reversed. For each search, subjects provided estimates
for set sizes of 6 and 18. The three stimulus pairs were (a) a vertical
line and a tilted (20° off vertical) line, (b) a circle and a circle inter-
sected by a line, and (c) a circle and a circle with an open gap (see
Figure 7, left panel). For brevity, we refer to these last stimuli as
O, Q, and C. All three stimulus pairs have been shown to produce
asymmetries in visual search time, such that the assignment of stim-
uli to target or distractor roles affects search time (Treisman &
Gormican, 1988; Treisman & Souther, 1985).
The estimation scale ranged from 0 to 2 s. In Experiment 5, we

adapted the estimate-to-points conversion rule to be 10/estimate3/4

rather than 10/estimate1/2. Making the number of offered points
decline faster ensured that the optimal strategy is to report the
median of the posterior distribution over reaction times, making
it possible to directly compare median search times and prospective
estimates.
In the visual search part, participants performed five consecutive

instances of each search. In order to prevent subjects from relying
on their iconic memory to identify the position of the target after
making an initial response, stimuli were masked by a random
black and white image for a duration of 50 ms following spacebar
responses.

Results

Accuracy in the visual search task was high (M= 0.96, 95% CI
[0.95, 0.97]). Error trials and visual search trials that took shorter
than 200 ms or longer than 5 s were excluded from all further anal-
yses. Participants were excluded if more than 30% of their trials were
excluded based on the aforementioned criteria, leaving 200 partici-
pants for the main analysis of Experiment 5.

Visual Search Asymmetries

Search slopes were significantly different for the six searches (F
[3.57, 704.01]= 152.88, MSE= 1, 167.92, p, .001, ĥ2

G = .376),
with orientation search slopes shallower on average than the other
two searches (M= − 139.41, 95% CI [− 149.80,− 129.01], t
[197]= − 26.44, p, .001).

Within the three stimulus pairs, we observed the expected search
asymmetries. The mean search slope for finding one vertical target
among multiple tilted distractors (18.12 ms/item) was significantly
steeper than the slope for the inverse search (5.16 ms/item; M=
12.97, 95% CI [8.27, 17.68], t[197]= 5.43, p, .001). Similarly,
the mean search slope for finding one O target among multiple Q
distractors (61.78 ms/item) was significantly steeper than the
slope for the inverse search (8.33 ms/item; M= 53.44, [47.66,
59.23], t[199]= 18.22, p, .001). Finally, the mean search slope
for finding one O target among multiple C distractors (59.88 ms/
item) was significantly steeper than the slope for the inverse search
(20.55 ms/item; M= 39.80, [33.30, 46.31], t[198]= 12.06,
p, .001).

Estimation Accuracy

The mean Spearman correlation between search slopes and their
estimates was 0.32 and significantly higher than zero (M= 0.32,
95% CI [0.28, 0.36], t[197]= 15.76, p, .001). Contrary to our
findings from Experiments 1 to 4, the average search estimation
slope (17.48 ms/item) was significantly shallower than the average
search slopes (29.00 ms/item; MD= − 11.39, [− 14.76,− 8.02],
t[197]= − 6.66, p, .001). This difference may be driven by the
change to our estimate-to-points conversion rule, which now incen-
tivized more risky estimates.

Overall, participants integrated information about the assignment
of stimuli to target or distractor roles in providing their estimates.
The mean Spearman correlation between search times and the esti-
mates of their reciprocal searches (i.e., searches with the same stim-
uli and set sizes, but an opposite target/distractor assignment) was
0.22—significantly lower than the correlation between search
times and their corresponding (non-reciprocal) estimates (0.32;
M= 0.10, 95% CI [0.05, 0.15], t[197]= 4.14, p, .001).

However, when examining the effect on search slope within spe-
cific stimulus pairs, we found little to no support for asymmetries in
prospective search time estimates. Estimation slopes were not sensi-
tive to the search asymmetry for line orientation (M= − 0.68, 95%
CI [− 4.31, 2.96], t[197]= − 0.37, p= .714; BF01= 11.78), and
they were similarly insensitive to the search asymmetry for Cs and
Os (M= 1.48, [− 2.87, 5.82], t[198]= 0.67, p= .503; BF01=
10.12). The results with respect to Q and Os were more nuanced,
with a marginally significant difference of 4.05 ms/item between
O-in-Q and Q-in-O estimate slopes (M= 4.05, [− 0.11, 8.21], t
[199]= 1.92, p= .056; BF01= 2.09). However, even here, a differ-
ence of 4 ms/item in search time estimates is more than 10 times
smaller than the true difference of 53.44 ms/item in slopes obtained
from actual searches. Interestingly, asymmetries in the mean esti-
mated search time (rather than the expected change per addition of
one distractor) were somewhat stronger (orientation: mean differ-
ence of 21 ms, t[197]= 1.79, p= .074; open edges: mean difference
of 21 ms, t[198]= 1.74, p= .084; line addition: mean difference of
40 ms, t[199]= 3.66, p, .001). However, here too, these effects are
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much smaller than the true effects in actual search behavior (mean
differences of 250, 387, and 556 ms for the three stimulus pairs,
respectively).

Experiment 6: Semantic Versus Visual Similarity

Search difficulty is a function, among other things, of the similar-
ity between the target and the distractors. If this fact is represented in
internal models of visual search, the question remains what kinds of
similarity affect people’s intuitions about search difficulty, and
whether they are the same ones that affect visual search in practice.
To test this, in Experiment 6 we manipulated semantic and visual
similarity between targets and distractors, and measured their inde-
pendent effects on search times and search time estimates.
Experiment 6 was pre-registered (pre-registration document:
https://doi.org/10.17605/OSF.IO/AH9NR). Raw data, experiment
demos, and full analysis scripts are available at https://github.com/
matanmazor/metaVisualSearch.

Participants

For Experiment 6, 150 participants were recruited from
the Prolific crowdsourcing webservice. The experiment took
about 10 min to complete. Participants were paid $2. The
highest performing 30% of participants received an additional
bonus of $2.

Procedure

The procedure for Experiment 6 was similar to that of Experiment
5. Participants estimated their prospective search times for six differ-
ent searches: three searches with the letter E and three with the num-
ber 3 serving as targets. Each target was used in three conditions
involving distractors that could be semantically and visually similar
to the target (baseline condition: the letters H and A for the target E
or the numbers 8 and 2 for the target 3), semantically dissimilar but
visually similar (the numbers 8 and 2 for the letter E and the letters A
and H for the number 3), or semantically similar but visually dissim-
ilar (same as the baseline condition, but appearing in a different font
(italics vs. not) relative to the target letter; see Figure 8, left panel).
For each target and condition, subjects provided estimates for set
sizes of 6 and 18.

Results

Accuracy in the visual search task was high (M= 0.95, 95% CI
[0.94, 0.97]). Error trials and visual search trials that took shorter
than 200 ms or longer than 5 s were excluded from all further anal-
yses. Participants were excluded if more than 30% of their trials were
excluded based on the aforementioned criteria, leaving 146 partici-
pants for the main analysis of Experiment 6.

Search slopes were significantly different for the six searches (F
[3.84, 544.92]= 63.72, MSE= 0.00, p, .001, ĥ2

G = .239; see

Figure 7
Results From Experiment 5

Note. True and estimated median search times for the six different searches. Within each pair, the easier search
(finding a tilted target among vertical distractors, a Q among Os, and a C among Os) appears in blue, and the recip-
rocal (harder) search in red. See the online article for the color version of this figure.
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Figure 8). Specifically, search slopes were significantly shallower
when the target and distractors were of different semantic catego-
ries (31 ms/item) compared to the baseline condition (47 ms/
item; t[142]= − 6.89, p, .001). Visual dissimilarity produced
an even stronger effect on estimation slopes, 24 ms/item in the
visual dissimilarity condition versus 47 ms/item in the baseline
condition (t[143]= − 8.19, p, .001). Finally, searching among
number distractors was overall harder than searching among letter
distractors (t[142]= − 15.22, p, .001; see Figure A1 for
distractor-specific effects).
Prospective search time estimates were significantly correlated

with actual search times (within-subject Spearman correlations:
M= 0.49, 95% CI [0.44, 0.54], t[145]= 20.72, p, .001). Similar
to search slopes, estimation slopes were also significantly different
for the six searches (F[4.11, 583.14]= 3.92, MSE= 0.00,
p= .003, ĥ2

G = .012). However, unlike true search times, here we
find no significant differences as a function of semantic dissimilarity
(25 ms/item for both the semantic dissimilarity and baseline con-
ditions; t[142]= 0.42, p= .673) or visual similarity (24 ms/item
and 25 ms/item in the visual dissimilarity and baseline conditions;
t[143]= − 1.11, p= .269). Subjects were however sensitive to
the main effect of distractor type on search time, producing steeper
estimation slopes for numbers (26 ms/item) than for letters (22 ms/
item; t[142]= − 2.96, p= .004; see Figure A1). Together, target-
distractor similarity along the manipulated dimensions had signifi-
cant effects on search difficulty, but we found no trace for these
effects in search time estimates.

Discussion

Over more than four decades of research on spatial attention,
experiments where participants report the presence or absence of a
target in a display revealed basic principles such as the set-size effect
(Treisman, 1986; Treisman & Sato, 1990; Wolfe, 1998), the advan-
tage for feature search over more complicated conjunction and spa-
tial configuration searches (Treisman, 1986; Treisman & Sato,
1990), and asymmetries in the representations of visual features
(Malinowski & Hübner, 2001; Shen & Reingold, 2001; Treisman

& Gormican, 1988; Treisman & Souther, 1985). It is revealing
that we find some of these findings intuitive and others more surpris-
ing: even without training in psychology, people have a set of expec-
tations and beliefs about their own perception and attention, and
about visual search more specifically.

Here we measured these expectations and their alignment with
actual visual search behavior. In six experiments, we show that
naïve participants provide search time estimates that are consistent
with partial metacognitive knowledge of their own attention. In
line with previous reports, prospective search time estimates
reflected accurate knowledge of the set size effect and differences
in efficiency between feature and conjunction searches (Levin &
Angelone, 2008; Miller & Bigi, 1977). Participants represented
search efficiency along a continuum, were able to provide reasonably
accurate search time estimates for complex stimuli and displays with
which they had no prior experience, and were sensitive to the assign-
ment of stimuli to target and distractor roles. At the same time, they
showed little to no insight into visual search asymmetries and the
effects of semantic target-distractor similarity on search efficiency,
and as a group, their estimates revealed no awareness of the pop-out
effect for color search. In the following paragraphs, we unpack our
central findings in more detail.

Do Subjects Know That Color Pops Out?

Searching for a deviant color is relatively easy, and people know
that. Psychology students correctly estimated that searching for a
green vertical line is harder when some distractors are green com-
pared to when all are red, and that increasing the number of distrac-
tors would make the search harder in the former, but not in the latter
all-red case (Levin & Angelone, 2008). The understanding that add-
ing more distractors does not affect search time in color search
reflects metacognitive insight into the parallel nature of color search.
Similarly, when asked to order visual search displays according to
difficulty, 81% of third graders used color, but only 48% used
shape, to inform their orderings (Miller & Bigi, 1977). Knowledge
about the special status of color is also evident in the way we com-
municate with others about what we see. People consistently

Figure 8
Results From Experiment 6

Note. Left: experimental conditions. Participants searched for an E or a 3 among semantically and visually similar
(black circles, first row), semantically dissimilar but visually similar (red triangles, second row), or semantically sim-
ilar but visually dissimilar distractors (blue squares, third row). Right: true and estimated search times for the three
conditions. See the online article for the color version of this figure.
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prefer object descriptions that include information about color, even
when color information is fully redundant (Jara-Ettinger & Rubio-
Fernandez, 2022). To account for this fact, Jara-Ettinger and
Rubio-Fernandez (2022) suggested that speakers hold mental mod-
els of the visual search behavior of their listeners, and choose their
words to maximize search efficiency according to these models. In
their hypothetical implementation of this model, color information
allows listeners to restrict their search to objects of the target’s
color, making the search highly efficient. Thus, knowing that listen-
ers can easily orient their attention by color, speakers prefer longer
descriptions that reduce the effective set size and by that improve
search efficiency.
In Experiments 1 and 2, we similarly found evidence for meta-

cognitive knowledge that color search is easy. Estimation slopes
for color search were consistently shallower than for orientation-
color and shape-color conjunction searches (for comparison, esti-
mation slopes for shape and orientation searches showed no such
difference). Still, although shallower than conjunction estimation
slopes, color estimation slopes were significantly positive at the
group level, reflecting a belief that color search is serial in nature.
This seems to be in conflict with the results of Levin and Angelone
(2008), where only 32.5% of subjects thought that adding more dis-
tractors to a color search would make it slower (compared to 87.9%
for color-orientation conjunction search). However, two differ-
ences between our studies are worth pointing out. First, Levin
and Angelone’s sample consisted of students, who may have
learned or heard about visual search, and updated their internal
models accordingly. And second, the fact that the mean estimation
slopes in our experiments were overall positive does not preclude
the possibility that for a subset of participants, it was in fact zero.
Using the proportion of positive estimation slopes for color search
in Experiments 1 and 2 (0.71), and the fact that this proportion
should equal 0.5 among subjects who believe that set size has no
effect on color search but their estimates are affected by random
noise, we can extract a lower bound for the proportion of subjects
who believed color search had a positive slope p by solving the
equation p + 0.5(1− p)= 0.71, resulting in an estimate of p=
0.42. Note that this analysis conservatively assumes that estimate
slopes should be positive for all subjects who believed color search
was serial. In other words, among our random sample of online par-
ticipants, more than 40% of subjects provided estimates that are
consistent with color search being serial.
This blindness to pop-out effects indicates a missing component

in internal models of visual search (or at least, in the models of
some participants): unlike Feature Integration Theory and Guided
Search models, they have no pre-attentive components. This
means that items are randomly selected in no particular order, and
the only thing that changes between easier and harder searches is
the speed with which this serial process can take place. Without a
bottom-up activation of “feature maps,” or effortless processing of
guiding signals, this model echos early theories of vision as a
sense that operates more like touch than like hearing, by sending
out sensors to explore the environment (for a review, see Dedes,
2005). The immediate pop-out of color cannot take place in a
model that requires subjects to voluntarily attend to individual
items in order to perceive them.
Beliefs about the relative efficiency of different search tasks can

also be probed by measuring the time participants take to conclude
that a target is absent from a display. Unlike target-present trials that

are terminated upon detecting the target, in target-absent trials deci-
sions are made based on the belief that a hypothetical target would
have been found. For example, if subjects know that color search
is parallel, they may immediately conclude that a target is absent
from an array if the target color does not immediately pop out to
their attention. In contrast, subjects that hold the erroneous belief
that finding a color requires a serial search will take longer to con-
clude that a target is missing. Using this indirect approach, and
focusing on the first trials of the experiment, before subjects have
the opportunity to adapt their search termination strategies, Mazor
and Fleming (2022) found that subjects immediately terminate a
search when the target color is absent from the search array. This pro-
vides indirect evidence that the implicit metacognitive knowledge
that is involved in guiding search termination is dissociable from
the kind of explicit metacognitive knowledge that we measure
here. In support of this dissociation between search termination
behavior and explicit metacognitive ratings of search difficulty,
Mazor and Fleming found that search termination slopes were shal-
lower for feature searches than for conjunction searches even among
participants whose explicit metacognitive ratings reflected a belief
that feature searches are harder.

What Is Person-Specific About Internal Models of Visual
Search?

In Experiments 3 and 4, we show that internal models of visual
search are at least partly person-specific: participants’ predictions
better fitted their own search times compared to the search times
of other participants. Still, in both experiments, the correlation
between participants’ estimates and the search times of other partic-
ipants was considerably above zero (see Figure 6). We note that
above-zero self–other correlations are expected even if internal mod-
els of visual search are fully person-specific, as long as search behav-
ior is relatively conserved across different individuals. In contrast, a
significant difference between self–self and self–other correlations is
expected only if some of the knowledge that is expressed in search
time estimates relies on idiosyncratic knowledge. We consider two
possible sources of inter-subject variation that may contribute to idi-
osyncratic beliefs about visual search: judgments about similarity or
complexity of visual objects, and person-specific knowledge about
attention.

First, subjects may vary in how they perceive different visual
objects to be simple or complex, similar or different. If perceptions
of complexity and similarity contribute to search behavior, and if
subjects’ internal models correctly specify these effects of complex-
ity and similarity on search behavior, generic internal models of
visual search may produce person-specific search time estimates.
Indeed, we found an advantage for self–self correlations only in
Experiments 3 and 4, where stimuli were complex enough to pro-
duce meaningful variability in how they are perceived by different
subjects. However, as we show in Experiments 4 and 5, any person-
invariant specification of how similarity contributes to search time
would need to be sensitive to asymmetries in the perception of sim-
ilarity (Tversky, 1977) in order to fully account for our findings of a
drop in the correlation between estimated and true search times when
swapping the target and distractor roles. For example, internal mod-
els may specify that what matters most to search time is whether the
target is similar to the distractors, but not so much whether the dis-
tractors are similar to the target.
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Second, beliefs about attention itself may be learned or calibrated
based on first-person experience. Humans accumulate observations
not only of external events and objects, but also of their own cogni-
tive and perceptual states. Specifically, subjects have been shown to
notice when their attention is captured by a distractor (Adams &
Gaspelin, 2021) even in the absence of an overt eye movement
(Adams & Gaspelin, 2020). These observations can then be inte-
grated into an internal model or an intuitive theory: which items
are more or less likely to capture attention, under what circum-
stances, etc. Future research into the development of this simplified
model and its expansion based on new evidence (e.g., by measuring
intuitions before and after exposure to some evidence, Bonawitz et
al., 2019) is needed to understand the relationship between metacog-
nitive monitoring of attention and metacognitive knowledge of
attentional processes.
This relates to recent theoretical and empirical advances under-

scoring the utility of keeping a mental self-model, or a self-schema
for attention control (Wilterson et al., 2020), social cognition
(Graziano, 2013), phenomenal experience (Metzinger, 2003), and
inference about absence (Mazor, 2021; Mazor & Fleming, 2022).
For example, knowing that a red berry would be easy to find
among green leaves, a forager can quickly decide that a certain
bush bears no ripe fruit. Alternatively, knowing that a snake
would be difficult to spot in the sand, they might allocate more atten-
tional resources to scanning the ground. Reasonably accurate search
time estimates in Experiments 3 and 4 suggest that internal models of
spatial attention can be applied to unseen stimuli in novel displays,
and are at least partly tailored to one’s own perceptual and cognitive
machinery.

What Is the Role of Target-Distractor Similarity?

Visual search is harder when distractors are similar to the target.
Having insight into this simple fact, and the fact that searches
become harder with the addition of more distractors, should be suf-
ficient to produce search time estimates that are aligned with actual
search times. This way, subjects can rely on a rough overlap between
items that are similar to the target and ones that have the potential to
be distracting, and produce relatively accurate search time estimates
based on their similarity judgments alone. Alternatively, as
described above, subjects may be using an approximate probabilistic
model of their own attention, producing search time estimates that
correlate with, but are not causally dependent on, perceptions of
similarity.
We set up Experiment 6 to directly test the effect of target-

distractor similarity on perceived search difficulty. To our surprise,
search time estimates were not at all sensitive to sizeable effects of
semantic and visual target-distractor similarity on search time.
This metacognitive blindness was specific to the interaction between
target and distractor identities: subjects were sensitive to the fact that
number distractors are more distracting overall—an effect that we,
based on our knowledge of scientific models of visual search,
could not predict in advance.
Importantly, this finding is consistent with search time estimates

being causally dependent on perceptions of similarity, just not the
kind in which a number is similar to a number more than to a letter,
or a tilted character more similar to tilted than to upright characters.
Instead, in this hypothetical similarity space, number distractors in
Experiment 6 were more similar to both 3s and Es than were letter

distractors. More broadly, if search time estimates are driven by
implicit judgments of target-distractor similarity, they seem to be
selective to specific similarity metrics that are perceived as being rel-
evant to search behavior. As a result, even this metacognitively lean
account of our findings requires subjects to hold nuanced beliefs
about their visual search behavior. As we discuss above, internal
models of visual search may alternatively produce search time esti-
mates based on an approximate probabilistic model, and without any
reference to target-distractor similarity. More work is needed to
determine where internal models of visual search fall on the contin-
uum between being simulation-based and being rule-based, noting
that much of human knowledge may lie somewhere in between
these two ends (Bass et al., 2021; Hegarty, 2004).

Conclusion

Across six experiments, we observed the following patterns in
prospective search time estimates: First, estimates correlated with
search times (Experiments 1–6). Second, estimates reflected knowl-
edge of the set-size effect (Experiments 1, 2, 5, and 6), and were
biased to assume a set-size effect even in searches that are in fact par-
allel (Experiments 1 and 2). Third, estimates were sensitive to the
relative efficiency of different searches (Experiments 1–6), even
for complex, unfamiliar stimuli (Experiments 3 and 4). Fourth, esti-
mates were sensitive to the assignment of stimuli to target and dis-
tractor roles (Experiments 4 and 5), but did not show reliable
search asymmetries for basic visual features (Experiment 5).
Finally, estimates were not sensitive to direct manipulation of target-
distractor similarity along visual and semantic dimensions
(Experiment 6).

Together, our results reveal that search difficulty is represented
along a gradient in a person-specific manner, but that this represen-
tation is limited. Most notably, we find that subjects have no meta-
cognitive access to pre-attentive stages of visual search. Our
findings place a lower bound on the richness and complexity of sub-
jects’ internal model of visual search and attention more generally,
opening a promising avenue for studying humans’ intuitive under-
standing of their own mental processes.
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Appendix

Incentive Structure

We assume that participants represent the distribution of response
times conditional on a specific search array as a right-skewed, posi-
tive distribution. Here, we assume that internal distributions of
response times abide by the rule that

log(RT) � N(m s)

where σ is fixed per participant, and μ varies as a function of search
difficulty.
In the estimation part, participants produce an estimate x. In case

they respond as fast, or faster, than their original estimate, they get a

bonus of
10
��

x
√ = 10 · x1/2. Since 10 is a constant, we ignore it in the

following derivations. The expected bonus given for a trial is now:

E[bonus|x] = PrlogRT�N(ms)[log(x) ≥ logRT] · x−1/2.

which can be re-written for log(x) as:

E[bonus|log(x)] = PrlogRT�N(ms)[log(x) ≥ logRT] · e−log(x)/2.

Since we assumed log RTs are distributed normally, we can
express log(x) relative to the distribution of log RTs as log(x)= μ
+ α · σ for some number α. This number represents the position of
the estimate relative to the distribution of response times, with
lower values corresponding to more risky estimates, and higher val-
ues to more conservative ones. The expected bonus is then:

E[bonus|a] = Prz�N(01)[a . z] · e−(m+a·s)/2

= Prz�N(01)[a . z] · e−(a·s)/2 · e−m/2.

where z is the standardized log(RT), with mean 0 and standard devi-
ation 1. μ only appears in the third term in the product, which func-
tions as a constant multiplier that scales the expected bonus equally
for all choices of α. It then follows that the function relating the
choice of α to the expected bonus preserves its shape for all possible
values of μ. This function reaches a maximum for α = 0.52 (the 70th
quantile) in Experiments 1–4, and for α = 0 (the 50th quantile) in
Experiment 5:

Figure A1
Bonus Scheme

Note. (Upper Panel) Response time distributions are modeled as expo-
nents of values drawn from a normal distribution with different values
of mu. (Middle Panel) The estimated value that maximizes the expected
bonus is fixed with respect to the mean of the log(RT) distributions,
regardless of what the mean is. The expected bonus is higher for lower val-
ues of mu, but to maximize their bonus participants should always choose
an estimate that is positioned in the 70 quantile of the RT distribution
(mean + 0.518 standard deviations in log space). (Lower Panel) In
Experiment 5, the bonus is maximized for estimates that are aligned
with the median of the RT distribution. See the online article for the
color version of this figure.
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Figure A2
Results From Experiment 6

Note. Error bars represent the standard error of the median, estimated with bootstrapping. See the online article for
the color version of this figure.
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