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Abstract
When making discrimination decisions between two stimulus categories, subjective confidence judgments are more positively 
affected by evidence in support of a decision than negatively affected by evidence against it. Recent theoretical proposals suggest 
that this “positive evidence bias” may be due to observers adopting a detection-like strategy when rating their confidence—one 
that has functional benefits for metacognition in real-world settings where detectability and discriminability often go hand in 
hand. However, it is unknown whether, or how, this evidence-weighting asymmetry affects detection decisions about the presence 
or absence of a stimulus. In four experiments, we first successfully replicate a positive evidence bias in discrimination confidence. 
We then show that detection decisions and confidence ratings paradoxically suffer from an opposite “negative evidence bias” to 
negatively weigh evidence even when it is optimal to assign it a positive weight. We show that the two effects are uncorrelated 
and discuss our findings in relation to models that account for a positive evidence bias as emerging from a confidence-specific 
heuristic, and alternative models where decision and confidence are generated by the same, Bayes-rational process.

Keywords  Confidence · Detection · Metacognition

When considering two alternative hypotheses, the probabil-
ity of the chosen hypothesis being correct is a function of 
the availability of evidence supporting not only the chosen 
hypothesis but also the unchosen one. For example, when 
deciding that there are more ants in the kitchen than in the 
living room, confidence should not only positively weigh the 
number of ants found in the kitchen (positive evidence) but 

also negatively weigh the number of ants found in the living 
room (negative evidence). Specifically, a decision should be 
based on the difference in the number of ants between the 
kitchen and the living room, but not on the total number of 
ants found in both rooms together (we refer to these quanti-
ties as relative evidence and sum evidence, respectively).

While sum evidence is irrelevant to discrimination decisions 
between two symmetrical hypotheses (e.g., kitchen or living 
room), it is highly informative with respect to detection deci-
sions about the presence or absence of a signal. For example, 
when deciding that an ant colony is nesting in the house, we 
should also care about the total number of ants, irrespective 
whether they are found in the kitchen or living room (see Fig. 1).

A surprising finding is that, despite the irrelevance of 
sum evidence to the accuracy of discrimination decisions, 
people are systematically more confident in their percep-
tual discrimination decisions when sum evidence is high. 
For example, Zylberberg et al. (2012) had subjects judge 
which of two flickering stimuli was brighter on average. 
Subjects were more confident in their decisions when both 
stimuli were brighter, indicating an effect of sum evidence 
(here, overall luminance) on decision confidence. A posi-
tive effect of sum evidence on decision confidence is 
mathematically equivalent to a disproportional weighting 
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of positive evidence over negative evidence, also known 
as a positive evidence bias (Koizumi et al., 2015; Peters 
et al., 2017; Rollwage et al., 2020; Samaha & Denison, 
2020; Sepulveda et al., 2020; Zylberberg et al., 2012). 
The two are equivalent because positively weighing the 
sum of positive and negative evidence effectively weakens 
the negative contribution of negative evidence to decision 
confidence, while strengthening the contribution of posi-
tive evidence. Notably, this finding stands in contrast to 
what is expected from the exponential scaling of sensory 
noise relative to stimulus energy (Weber’s law). Instead, 
an effect of sum evidence on discrimination confidence 
may indicate a profound link between how confidence is 
formed in general, and the processes underpinning percep-
tual detection (Rausch et al., 2018; Samaha et al., 2020).

Different models identify the origin of this evidence-
weighting asymmetry at different levels of the cognitive 
hierarchy, ranging from positing a metacognitive bias that 
ignores conflicting information (Maniscalco et al., 2016; 
metacognitive level, Peters et al., 2017), to asymmetries 
in the active sampling of evidence (attention allocation 
level; Sepulveda et  al., 2020), and down to perceptual 
asymmetries between the representations of signal and 
noise (perception level; Miyoshi & Lau, 2020; Webb 
et al., 2021). These models vary in whether they postulate 
separate evidence accumulation processes for decisions 
and confidence judgments, and in whether they model 

confidence formation as following a suboptimal heuristic, 
or alternatively as being optimal with respect to available 
information (information which may be limited or cor-
rupted by noise).

Here we focus on a subset of models which assume 
that subjects are rational decision makers equipped with 
veridical beliefs about the world, but who only have limited 
access to noisy evidence. Our models further assume that 
subjects’ confidence ratings are Bayesian estimates of the 
probability of being correct, given the exact same evidence 
that was used to make the decision. The models do not pos-
tulate any metacognitive biases, heuristics, or suboptimali-
ties. We show that two of these models reproduce a positive 
evidence bias (that is, a positive effect of sum evidence) 
in discrimination confidence. The same models also make 
predictions for evidence weighting in detection judgments 
and confidence ratings. In four experiments, reverse cor-
relation analysis revealed evidence weighting patterns that 
only partly agree with the predictions of our models. Most 
notably, our four models fail to account for a negative evi-
dence bias we observed in detection decisions and confi-
dence: a tendency to irrationally place a negative weighting 
on evidence, such as being more confident in the presence 
of a bright stimulus when one of the presented stimuli was 
unusually dark. In what follows we first describe the four 
models and the predictions they make, before turning to 
empirical findings from our four experiments.

Fig. 1   Discrimination and detection in a two-dimensional sig-
nal detection theory (SDT) model. Left: In a two-dimensional SDT 
model, evidence e is sampled from one of two Gaussian distribu-
tions (here, centered at [0,1] and [1,0]). We define relative evidence 
as eS1 − eS2 and sum evidence as eS1 + eS2. Circles represent contours 
of two-dimensional distributions. Center and Right: Decision and 
confidence accuracy are maximized when based on a log-likelihood 
ratio for the two stimulus categories. Center: In discrimination, this 

yields optimal decision and confidence criteria that are based on rela-
tive evidence (distance from the main diagonal), irrespective of sum 
evidence. Right: In detection, this yields optimal decision and confi-
dence that are based on a nonlinear interaction between relative and 
sum evidence. The third circle centred at (0,0) represents the two-
dimensional distribution of percepts in the absence of stimuli. (Col-
our figure online)
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Computational models

We model a setting in which agents are presented with a 
sequence of samples from two noisy sensory channels: E1 
and E2. The agents’ task is to decide which of the two chan-
nels was the signal channel (discrimination), or whether any 
of the channels had signal in it at all (detection). When a 
signal is present in a channel, evidence E is sampled from 
a normal distribution N(0.5, 1) , and when a signal is absent 
evidence is sampled from N(0, 1) (see Fig. 2, upper panel). 

In all four models agents only have access to a noisy ver-
sion of these samples E′, corrupted by additional internal 
sensory noise. After each time step, they update their belief 
about the relative likelihood of the observed samples under 
the two possible world states (signal in Channel 1 versus 2, 
or signal presence versus absence), and given full knowl-
edge of the true sample-generating process, including the 
properties of sensory noise. Each trial comprises 12 time 
steps. At the end of a trial, agents report the world state that 
maximizes the likelihood of the observed evidence, and rate 

Fig. 2   Computational models. Upper panel: True world model. Stim-
uli span 12 time points, each comprising values from two sensory 
channels (here, presented as luminance values). In discrimination 
blocks, values in one channel are sampled from the noise distribution 
(red), and values in the other channel are sampled from the signal dis-
tribution (blue). In detection blocks, on half of the trials, all values 
are sampled from the noise distribution (red). Vanilla model: On each 
time point, participants perceive both channels, corrupted by sensory 

noise that is sampled from a normal distribution. They then update 
their beliefs accordingly. Firing rate model: Sensory samples are sam-
pled from a Poisson distribution. Random attention model: Agents 
only attend one channel at a time. The attended channel is chosen at 
random per time point, with a strong bias which is consistent within 
a trial. Goal-directed attention model: Channels that are likely to 
include signal (as determined by previous samples) are more likely to 
be attended. (Colour figure online)
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their confidence as the objective probability that their deci-
sion was correct given the accumulated likelihood estimates. 
The four models vary in the properties of sensory noise, and 
in the selection of some channels for inspection by selection 
mechanisms.

Vanilla model

In the basic, vanilla model, sensory noise is sampled from 
a normal distribution N(0, 2) . This model corresponds to a 
standard equal-variance signal detection model, as illustrated 
in Fig. 1.

Firing rate model

The firing rate model is similar to the vanilla model, with the 
exception that perceived values are sampled from a Poisson, 
rather than a normal distribution. An important property of 
the Poisson distribution family, commonly used to model 
firing rates in neuronal populations, is that their mean and 
variance are lawfully coupled: the stronger the activation, 
the more variable it is. When applied to sensory neurons, 
this results in strong stimuli being subjectively perceived as 
noisier, consistent with the Weber–Fechner law (Fechner & 
Adler, 1860). In identifying the origin of the positive evi-
dence bias at the perceptual level, this model shares a family 
resemblance with the unequal-variance model by Miyoshi 
and Lau (2020). An important feature of this model is that 
perceptual noise is conditioned not on stimulus class, but 
on the perceptual sample. This seems plausible, as the per-
ceptual system has no access to stimulus class beyond the 
information that is available in perceptual samples.

Random attention model

Like the vanilla model, sensory noise is again sampled from 
N(0, 2) . Unlike the vanilla model, however, here agents have 
access to one channel per time point only (they ‘attend’ to 
one channel at a time). At the start of each trial, agents 
randomly choose a preferred channel. Then, on each time 
point, they attend to the preferred channel with probability 
0.95, and the nonpreferred channel with probability 0.05, 
and update their beliefs accordingly. We include this model 
because it is inherently asymmetric: on each trial, evidence 
from the preferred channel contributes more to both deci-
sion and confidence, simply because it is more visible to 
the agent.

Goal‑directed attention model

This model is similar to the random attention model, except 
that here attention is biased towards channels that are more 
likely to include signal. Specifically, agents track the log 

likelihood ratio LLRr between signal presence in the left or 
in the right channels, with the probability of attending the 
right channel being dynamically set at each time point to 
S(LLRr) where S is a sigmoid function with a steep slope 
of 5 and LLRr is based on all previous sensory samples in 
the trial. A conceptually similar drift diffusion model was 
previously shown to produce a positive evidence bias in con-
fidence ratings (Sepulveda et al., 2020).

Simulations

We simulated 20,000 discrimination and 20,000 detec-
tion trials per model (100 trials × 200 simulated agents per 
model). On each discrimination trial, the signal channel was 
designated as right or left with equal probability. On half of 
the detection trials both channels were noise channels. We 
then sampled, for each trial, 12 values from each channel. 
These 24 values were then passed on to the simulated agent, 
who returned a decision and a confidence rating. We then 
subjected the agents’ decisions and confidence ratings to a 
reverse correlation analysis. We now turn to describe this 
analysis, which will also be used to analyze the behaviour 
of human participants in Exps. 1–4.

Reverse correlation analysis

Following Zylberberg et al. (2012), we took a reverse cor-
relation approach and asked which sources of evidence 
(positive, negative, relative, and sum evidence) contribute 
to agents’ decisions and confidence ratings. This analysis 
focuses on random fluctuations in signal intensity, and asks 
how they affect behaviour (here, decisions and confidence 
in these decisions). Accordingly, in analyzing data from our 
simulated agents, we contrasted external stimulus energy 
(E) and not internal stimulus energy (E’) leaving internal 
noise hidden.

Methodological note: Positive evidence bias in perceptual 
decisions  The positive evidence bias in decision confidence 
is often seen as particularly striking, given that positive and 
negative evidence are equally weighted in forming a decision 
(Peters et al., 2017; Zylberberg et al., 2012). For example, 
using reverse correlation, Zylberberg et al. (2012) showed 
that momentary fluctuations in the availability of perceptual 
evidence for and against a decision were equally predictive 
of the decision itself. Similarly, Peters et al. (2017) showed 
that in classifying rapidly presented images as ‘face’ or 
‘house’, decisions are not solely guided by positive evidence 
(e.g., face-related brain activity when deciding ‘face’), but 
also by negative evidence (e.g., house-related brain activity 
when deciding ‘face’).
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In both cases, it is useful to ask what it would look like 
for an agent to only consider positive evidence in making 
a decision. This soon becomes circular, because positive 
and negative evidence are defined with respect to the deci-
sion itself. For example, when analyzing the decisions of an 
agent that consistently ignores evidence for one alternative 
(similar to the random attention model above), both positive 
and negative evidence should still be predictive of decisions. 
The effect of positive evidence is then driven by those tri-
als in which the agent selected the attended alternative, and 
the effect of negative evidence by those trials in which the 
agent selected the ignored alternative (because the evidence 
for the attended alternative was insufficient). Put differently, 
asymmetries of positive and negative evidence cannot affect 
the decision itself, because at the time of making the deci-
sion there is no positive and negative evidence to speak 
of—instead, there are two sources of evidence that may 
become positive or negative, depending on the decision that 
is selected. For this reason, in measuring evidence weighting 
in decision formation, we defined relative and sum evidence 
relative to the ground truth rather than the agents’ decision.

Discrimination decisions  From each trial (tr) we extracted 
random fluctuations in perceptual evidence in the signal 
Etr
s
(t) and nonsignal Etr

n
(t) sensory channels. To make sure 

we are measuring true random fluctuations and not system-
atic differences between noise and signal channels, we mean 
centered the signal channels across trials to 0, such that the 
average time course across all agents and trials was con-
stant at 0. For simplicity, in extracting qualitative predic-
tions from model simulations we averaged all time points 
in a trial to obtain trial-level estimates Etr

s
 and Etr

n
 . Human 

data were analyzed in a similar fashion, but separately for 
each time point. Time-resolved decision and confidence ker-
nels derived from model simulations are available in the 
Appendix.

‘Relative evidence’ was defined as the difference in 
noise terms between the signal and nonsignal channels 
( Etr

relative
= Etr

s
− Etr

n
 ). To obtain a decision kernel, we took 

the difference between the average relative evidence in tri-
als where agents chose the signal and nonsignal channels 
Erelative =

⟨

Etr
relative

⟩

CORRECT
−
⟨

Etr
relative

⟩

INCORRECT
 . This was 

done separately for each simulated agent, and the result-
ing values were tested against zero in a t test. In all four 
models, relative evidence was higher on trials in which the 
agent correctly identified the signal channel (Fig. 3A, orange 
markers).

‘Sum evidence’ was defined as the total sum of noise 
terms across both channels ( Etr

sum
= Etr

s
+ Etr

n
 ). Similarly, we 

used the difference between sum evidence in correct and 

Fig. 3   Simulated predictions for the reverse correlation analysis, 
derived from the four models. A Effects of relative (orange mark-
ers) and sum (black markers) evidence on discrimination decisions. 
B Effects of evidence for the chosen (green markers) and unchosen 
(purple markers) alternatives on discrimination confidence. C Effects 
of sum and relative evidence (defined with respect to participants’ 
decisions) on discrimination confidence. D, F, and H Effects of evi-

dence in the signal channel (blue markers) and in the nonsignal chan-
nel (red markers) on detection decisions, confidence in yes responses, 
and confidence in no responses, respectively. E, G, and I Effects of 
relative evidence (orange markers) and sum evidence (black markers) 
on detection decisions, confidence in yes responses, and confidence 
in no responses, respectively. For scale, grid lines are plotted in com-
mon arbitrary units
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incorrect trials Esum =
⟨

Etr
sum

⟩

CORRECT
−
⟨

Etr
sum

⟩

INCORRECT
 

to probe effects of sum evidence on decision. Sum evidence 
had no effect on decision in any of the four models (Fig. 3A, 
black markers).

Discrimination confidence  In all four models, confidence 
was defined as the Bayesian probability of being correct, 
given an equal prior over the two world states (see Appen-
dix). The median confidence rating was used to split evi-
dence channels into four sets, according to decision (chosen 
or unchosen, depending on the agent’s decision) and confi-
dence level (high or low). Confidence kernels for the chosen 
and unchosen channels were then extracted by subtracting 
the mean low-confidence from the mean high-confidence 
values for each channel:

Confidence kernels were also extracted for relative and 
sum evidence:

In all four models, high confidence ratings were associ-
ated with stronger evidence in the chosen channel (Fig. 3B, 
green markers) and weaker evidence in the unchosen chan-
nel (Fig. 3B, purple markers). As expected, this translated to 
an effect of relative evidence on decision confidence: agents 
were more confident when the evidence difference between 
the chosen and unchosen channels (Econf − relative) was high 
(Fig. 3C, orange markers).

Critically, only the firing rate and goal-directed attention 
models produced an effect of sum evidence (Econf − sum) on 
decision confidence, such that agents were more confident 
when overall evidence was high (Fig. 3C, black markers). 
As reviewed above, this effect is consistent with a positive 
evidence bias in discrimination confidence.

Detection decisions  For the reverse correlation analysis of 
detection decisions, we focused on trials in which a signal 
was present. This allowed us to disentangle the effects of 
evidence in the signal and nonsignal channels on detection 
decisions and confidence. We subtracted evidence in trials 
that resulted in a ‘no’ (target absent) decision from evidence 
in trials that resulted in a ‘yes’ (target present) decision, 
separately for the signal and nonsignal channels:

Econf−chosen =
⟨

Etr
chosen

⟩

HIGH
−
⟨

Etr
chosen

⟩

LOW

Econf−unchosen =
⟨

Etr
unchosen

⟩

HIGH
−
⟨

Etr
unchosen

⟩

LOW

Econf−relative =
(⟨

Etr
chosen

⟩

HIGH
−
⟨

Etr
unchosen

⟩

HIGH

)

−
(⟨

Etr
chosen

⟩

LOW
−
⟨

Etr
unchosen

⟩

LOW

)

Econf−sum =
(⟨

Etr
chosen

⟩

HIGH
+
⟨

Etr
unchosen

⟩

HIGH

)

−
(⟨

Etr
chosen

⟩

LOW
+
⟨

Etr
unchosen

⟩

LOW

)

We similarly obtained detection kernels as a function of 
relative and sum evidence:

In all four models, ‘yes’ responses were associated with 
stronger evidence in the signal channel (Fig. 3D, blue mark-
ers). Importantly, the same was true for evidence in the non-
signal channel: Agents were more likely to respond ‘yes’ 
when evidence was stronger in this channel too (Fig. 3D, 
red markers). This is a key prediction of our Bayes-rational 
models: In detection, evidence in both channels should be 
weighted positively, as the agent’s goal is to detect any sig-
nal relative to noise. Together, these two positive effects 
translated to a strong effect of sum evidence on detection 
decisions: Agents were more likely to respond ‘yes’ when 
the total sum of evidence was high (Fig. 3E, black markers). 
A weaker effect of relative evidence on detection decisions 
was observed in all models except for the random attention 
model (Fig. 3E, orange markers).

Detection confidence  Similar to the discrimination task, 
the median confidence rating was used to split evidence 
channels into four sets, according to signal (signal channel 
or nonsignal channel) and confidence level (high or low). 
This was done separately for ‘yes’ and ‘no’ responses. Con-
fidence kernels for the signal and nonsignal channels were 
then extracted by subtracting the mean low-confidence from 
the mean high-confidence evidence values for each channel 
and decision. For example, for ‘yes’ responses this meant 
computing:

Edetection−s =
⟨

Etr
s

⟩

YES
−
⟨

Etr
s

⟩

NO

Edetection−n =
⟨

Etr
n

⟩

YES
−
⟨

Etr
n

⟩

NO

Edetection−relative =
(⟨

Etr
s

⟩

YES
−
⟨

Etr
n

⟩

YES

)

−
(⟨

Etr
s

⟩

NO
−
⟨

Etr
n

⟩

NO

)

Edetection−sum =
(⟨

Etr
s

⟩

YES
+
⟨

Etr
n

⟩

YES

)

−
(⟨

Etr
s

⟩

NO
+
⟨

Etr
n

⟩

NO

)

Econf−yes−s =
⟨

Etr
s

⟩

YES,HIGH
−
⟨

Etr
s

⟩

YES,LOW

Econf−yes−n =
⟨

Etr
n

⟩

YES,HIGH
−
⟨

Etr
n

⟩

YES,LOW

Econf−yes−relative =

(

⟨

Etr
s

⟩

YES,HIGH
−
⟨

Etr
n

⟩

YES,HIGH

)

−

(

⟨

Etr
s

⟩

YES,LOW
−
⟨

Etr
n

⟩

YES,LOW

)

Econf−yes−sum =

(

⟨

Etr
s

⟩

YES,HIGH
+
⟨

Etr
n

⟩

YES,HIGH

)

−

(

⟨

Etr
s

⟩

YES,LOW
+
⟨

Etr
n

⟩

YES,LOW

)
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In all four models, agents were more confident in their 
decisions about signal presence when evidence in the sig-
nal channel was stronger (Fig. 3F, blue markers). Mirror-
ing the detection decision kernel means, confidence in 
signal presence was also positively affected by evidence 
for signal in the nonsignal channel (Fig. 3F, red mark-
ers). Together, these two positive effects produced an 
overall positive effect of sum evidence on confidence in 
signal presence (Fig. 3G, black markers). All four models 
predicted a weaker effect of relative evidence (Fig. 3G, 
orange markers).

Finally, we asked how random variability in sensory noise 
contributed to confidence in detection “no” responses. Here, 
a low number of misses made it difficult to reliably estimate 
confidence kernels for the firing rate model. In the remaining 
three models, agents were more confident in decisions about 
signal absence when evidence in both signal and nonsignal 
channels was weaker (Fig. 3H, blue and red markers, respec-
tively). Together, these negative effects translated to a total 
negative effect of sum evidence on confidence in absence 
(Fig. 3I, black markers). None of the four models predicted a 
negative effect of relative evidence on confidence in absence, 
but the random attention model predicted a subtle positive 
effect (Fig. 3I, orange markers).

Equipped with qualitative predictions from four 
Bayes-rational models, we now turn to describing our 
empirical results. As we report below, these models 
failed to account for a key signature of human decision 
making: in both decisions and confidence ratings, sub-
jects negatively weigh evidence in the nonsignal channel 
when inferring signal presence, as if they are making a 
discrimination judgment about the origin of the signal, 
rather inferring signal presence.

Experiment 1

Methods

Par ticipants   The research complied with all  rel-
evant ethical regulations and was approved by the 
Research Ethics Committee of University College 
London (UCL; study ID number 1260/003). Ten par-
ticipants were recruited via the UCL’s psychology 
subject pool, and gave their informed consent prior to 
their participation. Each participant performed four 
sessions of 600 trials each, in blocks of 100 trials. 
Sessions took place on different days and consisted 
of three discrimination blocks interleaved with three 
detection blocks.

Experimental procedure  The experimental procedure for 
Exp. 1 largely followed the procedure described in Zylber-
berg et al. (2012), Exp. 1. Participants observed a random-
dot kinematogram for a fixed duration of 700 ms. In dis-
crimination trials, the direction of motion was one of two 
opposite directions with equal probability, and participants 
reported the observed direction by pressing one of two arrow 
keys on a standard keyboard. In detection blocks, partici-
pants reported whether there was any coherent motion by 
pressing one of two arrow keys on a standard keyboard. In 
half of the detection trials, dots moved coherently to one of 
two opposite directions, and in the other half all dots moved 
randomly.

In both detection and discrimination blocks, participants 
indicated their confidence following each decision. Con-
fidence was reported on a continuous scale ranging from 
chance to complete certainty. To avoid systematic response 
biases affecting confidence reports, the orientation (vertical 
or horizontal) and polarity (e.g., right or left) of the scale 
was set to agree with the Type 1 response. For example, 
following an up-arrow press, a vertical confidence bar was 
presented where ‘guess’ is at the center of the screen and 
‘certain’ appeared at the upper end of the scale (see Fig. 4).

To control for response requirements, for five subjects, 
the dots moved to the right or to the left, and for the other 
five subjects, they moved upward or downward. The first 
group made discrimination judgments with the right and left 
keys and detection judgments with the up and down keys, 
and this mapping was reversed for the second group. The 
number of coherently moving dots (‘motion coherence’) was 
adjusted to maintain performance at around 70% accuracy 
for detection and discrimination tasks independently. This 
was achieved by measuring mean accuracy after every 20 tri-
als, and adjusting coherence by a step of 3% if accuracy fell 
below 60% or went above 80%. We opted for a block-wise 
staircasing procedure in order to keep motion energy rela-
tively stable across trials, allowing participants to optimally 
place their detection criterion. The staircasing procedure for 
both tasks started at a coherence value of 1.0.

Stimuli for discrimination blocks were generated using 
the exact same procedure reported in Zylberberg et al. 
(2012).1 Trials started with a presentation of a fixation 
cross for 1 second, immediately followed by stimulus 
presentation. The stimulus consisted of 152 white dots 
(diameter = 0.14∘), presented within a 6.5∘ circular aper-
ture centered on the fixation point for 700 ms (42 frames, 
frame rate = 60 Hz). Dots were grouped in two sets of 
76 dots each. Every other frame, the dots of one set were 
replaced with a new set of randomly positioned dots. For 

1  We reused the original MATLAB code that was used for Exp. 1 in 
Zylberberg et al. (2012), kindly shared by Ariel Zylberberg.



	 Attention, Perception, & Psychophysics

1 3

each coherence value of c′, a proportion of c′ of the dots 
from the second set moved coherently in one direction 
by a fixed distance of 0.33∘, while the remaining dots in 
the set moved in random directions by a fixed distance of 
0.33∘. On the next update, the sets were switched, to pre-
vent participants from tracing the position of specific dots. 
Frame-specific coherence values were sampled for each 
screen update from a normal distribution centred around 
the coherence value c with a standard deviation of 0.07, 
with the constraint that c′ must be a number between 0 
and 1.

Stimuli for detection blocks were generated using a simi-
lar procedure, where on a random half of the trials coherence 
was set to 0%, without random sampling of coherence values 
for different frames.

To probe global metacognitive estimates of task perfor-
mance, at the end of each experimental block (100 trials) 
participants estimated the number of correct responses they 
have made. Analysis of these global metacognitive estimates 
is provided in the Appendix.

Analysis

Experiment 1 was preregistered (preregistration document is 
available here: https://​osf.​io/​z2s93/). Our full preregistered 
analysis is available in the Appendix.

Reverse correlation analysis  For the reverse correla-
tion analysis, we followed a procedure similar to the one 

described in Zylberberg et al. (2012). For each of the four 
directions (right, left, up and down), we applied two spa-
tiotemporal filters to the frames of the dot motion stimuli 
as described in previous studies (Adelson & Bergen, 1985; 
Zylberberg et al., 2012). The outputs of the two filters 
were squared and summed, resulting in a three-dimen-
sional matrix with motion energy in a specific direction as 
a function of x, y, and time. We then took the mean of this 
matrix across the x and y dimensions to obtain an estimate 
of the overall temporal fluctuations in motion energy in 
the selected direction. Using this filter, we obtained esti-
mates of temporal fluctuations in the mean and variance of 
motion energy for upward, downward, leftward and right-
ward motion within each trial. We refer to these temporal 
estimates as motion energy vectors, where each such vec-
tor consists of 42 entries, one per time point. Additionally, 
for every time point we extracted the variance along the x 
and y dimensions, but given the high correlation between 
our estimates of mean and variance, we focused our analy-
sis on the mean motion energy.

In order to distill random f luctuations in motion 
energy from mean differences between stimulus cat-
egories, we subtracted the mean motion energy from 
trial-specific motion energy vectors. The mean motion 
energy vectors were extracted by averaging the motion 
energy vectors of all participants, separately for each 
motion coherence level and motion direction. We chose 
this approach instead of the linear regression approach 
used by Zylberberg et al. (2012) in order to be sensitive 
to the possibility of nonlinear effects of coherence on 
motion energy.

Fig. 4   Task design for Experiment 1. In both discrimination and 
detection blocks, participants viewed 700 ms of a random dot motion 
array, after which they made a keyboard response to indicate their 
decision (motion direction in discrimination, signal absence or pres-
ence in detection), followed by a continuous confidence report using 

the mouse. Five participants viewed vertically moving dots and indi-
cated their detection responses on a horizontal scale, and five partici-
pants viewed horizontally moving dots and indicated their detection 
responses on a vertical scale

https://osf.io/z2s93/
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Results

Decision accuracy  Overall proportion correct was 0.74 
in the discrimination and 0.72 in the detection task. Per-
formance in discrimination was significantly higher than 
in detection MD = 0.02, 95% CI [0.00, 0.04], t(9) = 2.43, 
p = .038. This difference in task performance reflected a 
slower convergence of the staircasing procedure for the 
discrimination task during the first session. When dis-
carding all data from the first session and analyzing only 
data from the last three sessions (1,800 trials per par-
ticipant), task performance was equated between the two 
tasks at the group level MD = 0.00, 95% CI [−0.02, 0.02], 
t(9) =  − 0.05, p = .962; BF10 = 0.31. In order to avoid con-
founding differences between discrimination and detection 
decision and confidence profiles with more general task 
performance effects, the first session was excluded from 
all subsequent analyses.

Overall properties of response time and confidence dis‑
tributions  In detection, participants were more likely 
to respond ‘yes’ than ‘no’ (mean proportion of ‘yes’ 
responses: M = 0.59, 95% CI [0.53, 0.64], t(9) = 3.45, 
p = .007). We did not observe a consistent response 
bias for the discrimination data (mean proportion of 
‘rightward’ or ‘upward’ responses: M = 0.52, 95% CI 
[0.47, 0.57], t(9) = 1.00, p = .344).

Replicating previous studies (Kellij et al., 2021; Mazor 
et al., 2020, 2021; Meuwese et al., 2014), we find the typi-
cal asymmetries between detection ‘yes’ and ‘no’ responses 
in response time, overall confidence, and the alignment 
between subjective confidence and objective accuracy (also 
termed metacognitive sensitivity, measured as the area under 
the response-conditional Type 2 ROC curve). ‘No’ responses 
were slower compared with ‘yes’ responses (median differ-
ence: 85.37 ms), and accompanied by lower levels of sub-
jective confidence (mean difference of 0.08 on a 0–1 scale). 
Metacognitive sensitivity was higher for detection ‘yes’ 
compared with detection ‘no’ responses (mean difference in 
area under the curve units: 0.11). No difference in response 
time, confidence, or metacognitive sensitivity was found 
between the two discrimination responses. For a detailed 
statistical analysis of these behavioural asymmetries, see 
Appendix.

Reverse correlation

Discrimination  Using reverse correlation we quantified 
the effect of random fluctuations in motion energy on the 
probability of correctly identifying the true direction of 
motion, and on the temporal dynamics of decision forma-
tion. Importantly, this analysis approach treats leftward 

and rightward motion energy as two independently rep-
resented quantities, assuming that the decision-making 
module has access to individual spatiotemporal filters, 
and not only to the difference between them (Adelson & 
Bergen, 1985; Levinson & Sekuler, 1975; Van Santen & 
Sperling, 1984). We return to this point in describing the 
rationale for Exp. 2.

Following Zylberberg et al. (2012), we focused our 
analysis on the first 300 ms of the trial. Participants’ 
discrimination responses were significantly affected 
by the relative evidence for the true direction of 
motion compared with the opposite direction, (Erelative; 
t(9) = 8.48, p < .001), whereas sum evidence (Esum; the 
total amount of energy in both directions) had no effect 
on discrimination accuracy, (t(9) =  − 0.70, p = .502 see 
Fig. 5A). This is consistent with a symmetric weighting 
of evidence in decision formation, and with the predic-
tions of all four models.

We next turned to the contribution of motion energy to 
subjective confidence ratings. The median confidence rating 
in each experimental session was used to split all motion 
energy vectors into four groups, according to decision 
(chosen or unchosen directions) and confidence level (high 
or low). Confidence kernels for the chosen and unchosen 
directions were then extracted by subtracting the mean low-
confidence from the mean high-confidence vectors for both 
the chosen and unchosen directions. Motion energy in the 
chosen direction (positive evidence) significantly increased 
confidence (Econf − chosen, t(9) = 4.99, p = .001), but we found 
no significant decrease in confidence with stronger motion 
energy in the opposite direction, (Econf − unchosen, t(9) =  − 0.25, 
p = .807; see Fig. 5B). Equivalently, both relative and sum 
evidence positively contributed to decision confidence 
(Econf − relative, t(9) = 2.76, p = .022; Econf − sum: t(9) = 2.92, 
p = .017; see Fig. 5C). This is a replication of the positive 
evidence bias observed in Zylberberg et al. (2012), and 
consistent with the predictions of the firing rate and goal-
directed attention models.

Detection  Participants were significantly more likely to 
respond ‘yes’ when fluctuations in motion energy during 
the first 300 ms of the trial strengthened motion energy 
in the true direction of motion (Edetection − s, t(9) = 6.06, 
p < .001; see Fig. 5D, blue curve). Critically, and in con-
trast to the predictions of all four Bayes-rational models, 
motion energy in the opposite direction had a negative, 
rather than a positive effect on the probability of respond-
ing ‘yes’ (Edetection − n, t(9) =  − 2.89, p = .018; see Fig. 5D, 
red curve). In other words, stronger motion energy in the 
opposite direction made it less likely that people would say 
a signal was present.

Confidence ratings were higher in detection ‘yes’ 
responses when random noise strengthened the motion 
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energy in the true direction of motion  (Econf − yes − s; 
t(9) = 4.59, p = .001; see Fig. 5F, blue curve). Again, in 
contrast to our model predictions, motion energy in the 
opposite direction had a negative, rather than a positive 
effect on detection confidence. That is, subjects were more 
confident in the presence of coherent motion when there 
was an unusually low level of motion energy in one of 
the two directions (Econf − yes − n; t(9) =  − 2.95, p = .016; see 
Fig. 5F, red curve).

Furthermore, unlike in the discrimination task, we 
found no effect of sum evidence on confidence ratings 
in ‘yes’ responses (Econf − yes − sum; t(9) = 0.14, p = .892; 
see Fig. 5G, black curve). To reiterate, while detection 
decisions were mostly sensitive to fluctuations in motion 
energy toward the true direction of motion, confidence 
judgments in detection ‘yes’ responses were equally sen-
sitive (with opposite signs) to fluctuations in the true and 
opposite directions of motion. However, and to anticipate 
the results of Exp. 3, presented below, we note that this 
symmetric weighting of evidence in detection confidence 
was not replicated in a subsequent experiment designed to 
directly test this surprising result.

Finally, confidence in ‘no’ responses was independent of 
relative, sum, positive, and negative evidence (all ps > 0.1; 
see Fig. 6H).

Experiment 2

In Experiment 1, we replicated previous observations of a 
positive evidence bias in discrimination confidence, such 
that confidence scaled with the total sum of evidence for 
both hypotheses. In contrast, in detection an effect of sum 
evidence was apparent for the decision, but not for the con-
fidence kernels. Furthermore, confidence in detection ‘no’ 
responses was unaffected by fluctuations in motion energy.

Importantly, our analysis treated energy in the leftward 
and rightward directions as two independently represented 
quantities. Although models of motion perception commonly 
include such direction-selective sensory channels (Adelson 
& Bergen, 1985; Levinson & Sekuler, 1975; Van Santen & 
Sperling, 1984), it is unclear to what degree left and right 
motion energy channels are available to decision-making 

Fig. 5   Reverse correlation, Exp. 1. A Effects of relative (orange 
curve) and sum (black curve) evidence on discrimination decisions. 
Note that relative evidence here is defined with respect to the true 
direction of motion, not participants’ decisions. B Effects of evidence 
for the chosen (green curve) and unchosen (purple curve) alternative 
on discrimination confidence. C Effects of sum and relative evidence 
(defined with respect to participants’ decisions) on discrimination 
confidence. D, F and H Effects of evidence for the true direction of 
motion (blue curve) and for the opposite direction of motion (red 

curve) on detection decisions, confidence in yes responses, and con-
fidence in no responses, respectively. E, G, and I Effects of relative 
evidence (orange curve) and sum evidence (black curve) on detec-
tion decisions, confidence in yes responses, and confidence in no 
responses, respectively. The first 300 ms of the trial are marked in 
black. All nine panels are presented at the same scale, in arbitrary 
motion-energy units. Stars represent significance in a two-sided t test 
for the first 300 ms of the trial: *p < .05, **p < .01, ***p < .001. 
(Colour figure online)
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modules, as opposed to a mere subtraction between the two. 
In Exp. 2, the two sensory channels corresponded to two sep-
arate stimuli, making it much more likely that subjects repre-
sented them in an independent manner. Using these stimuli, 
we tested the generalizability of these findings to a different 
type of stimuli (flickering patches) and mode of data col-
lection (a ~10-minute online experiment). Our preregistered 
objectives (documented here: https://​osf.​io/​d3vkm/) were (1) 
to replicate a positive evidence bias in discrimination confi-
dence, (2) to replicate the absence of a positive evidence bias 
in detection confidence, and (3) to replicate the absence of an 
effect of evidence on confidence in ‘no’ judgments.

Methods

Participants  The research complied with all relevant ethical 
regulations, and was approved by the Research Ethics Commit-
tee of University College London (study ID number 1260/003). 
147 participants were recruited via Prolific (prolific.co) and 
gave their informed consent prior to their participation. They 
were selected based on their acceptance rate (>95%) and for 
being native English speakers. Following our preregistration, 
we aimed to collect data until we had reached 100 included 
participants based on our prespecified inclusion criteria (see 
https://​osf.​io/​d3vkm/). Our final data set includes observations 
from 102 included participants. The entire experiment took 
around 10 minutes to complete. Participants were paid £1.25 
for their participation, equivalent to an hourly wage of £7.50.

Experimental paradigm  A static demo of Exp. 2 is avail-
able on the proje​ct’s GitHub. The experiment was pro-
grammed using the jsPsych and P5 JavaScript packages 
(De Leeuw, 2015; McCarthy, 2015), and was hosted 

on a JATOS server (Lange et  al., 2015). It consisted 
of two tasks (Detection and Discrimination) presented 
in separate blocks. A total of 56 trials of each task was 
delivered in two blocks of 28 trials each. The order 
of experimental blocks was interleaved, starting with 
discrimination.

The first discrimination block started after an instruction 
section, which included instructions about the stimuli and 
confidence scale, four practice trials and four confidence 
practice trials. Further instructions were presented before 
the second block. Instruction sections were followed by 
multiple-choice comprehension questions, to monitor par-
ticipants’ understanding of the main task and confidence 
reporting interface. To encourage concentration, in addition 
to trial-wise feedback we also provided participants with 
feedback about their overall performance and mean confi-
dence at the end of the second and fourth blocks.

Importantly, unlike in the lab-based experiment, there 
was no calibration of difficulty for the two tasks. The ration-
ale for this is that in Exp. 1, perceptual thresholds for motion 
discrimination were highly consistent across participants, 
and staircasing took a long time to converge. Furthermore, 
in Exp. 1, we aimed to control for task difficulty, but this 
introduced differences between the stimulus intensities used 
for detection and discrimination. To complement our find-
ings, here we aimed to match stimulus intensity between the 
two tasks and accepted that task performance might vary 
between detection and discrimination as a result.

Trial structure  In discrimination blocks, trial structure 
closely followed Exp. 2 from Zylberberg et al. (2012), with 
a few adaptations. Following a fixation cross (500 ms), two 
sets of four adjacent vertical gray bars were presented as 

Fig. 6   Task design for Experiment 2. In both tasks, participants 
viewed two flickering patches for 480 ms, after which they made a 
keyboard response to indicate which of the patches was brighter 

(discrimination) or whether any of the patches was brighter than the 
background (detection). (Colour figure online)

https://osf.io/d3vkm/
https://osf.io/d3vkm/
https://matanmazor.github.io/reverseCorrelation/experiments/demos/Experiment2/
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a rapid serial visual presentation (RSVP; 12 frames, pre-
sented at 25 Hz), displayed to the left and right of the fixa-
tion cross (see Fig. 7). On each frame, the luminance of each 
bar was randomly sampled from a Gaussian distribution with 
a standard deviation of 10/255 units in the standard RGB 
0-255 coordinate system. For one set of bars, this Gaussian 
distribution was centered at the same luminance value as 
the background (128/255). For the other set, it was centered 
at 133/255, making it brighter on average. Participants then 
reported which of the two sets was brighter on average using 
the ‘D’ and ‘F’ keys on the keyboard. After their response, 
they rated their confidence on a continuous scale, by con-
trolling the size of a coloured circle with their mouse. High 
confidence was mapped to a big, blue circle, and low confi-
dence to a small, red circle. To discourage hasty confidence 
ratings, the confidence rating scale stayed on the screen for 
at least 2,000 ms. Feedback about decision accuracy was 
delivered after the confidence rating phase.

Detection blocks were similar to discrimination blocks, 
with the exception that decisions were made about whether 
the average luminance of either of the two sets was brighter 
than the gray background, or not. In ‘different’ trials, the 
luminance of the four bars in one of the sets was sampled 
from a Gaussian distribution with mean 133/255, and the 
luminance of the other set from a Gaussian distribution with 
mean 128/255. In ‘same’ trials, the luminance of both sets 
was sampled from a distribution centered at 128/255. Par-
ticipants were told that only one of the two patches could 
be bright, but never both. Decisions in Detection trials were 

reported using the ‘Y’ and ‘N’ keys. Confidence ratings and 
feedback were as in the discrimination task.

Results

Decision accuracy  Overall proportion correct was 0.85 in 
the discrimination and 0.67 in the detection task. Perfor-
mance in discrimination was significantly higher than in 
detection (MD = 0.18), 95% CI [0.16, 0.20], t(101) = 18.01, 
p < .001. Unlike in Exp. 1, where we aimed to control for 
task difficulty, here we decided to match stimulus intensity 
between the two tasks, so a difference between detection and 
discrimination performance was expected (Wickens, 2002).

Overall properties of decision and confidence distribu‑
tions  Similar to Exp. 1, participants were more likely to 
respond ‘yes’ than ‘no’ in the detection task (mean propor-
tion of ‘yes’ responses: 0.54). We did not observe a con-
sistent response bias in discrimination (mean proportion 
of ‘right’ responses: 0.50). The two detection responses 
showed the typical asymmetries, with ‘yes’ responses being 
faster (median difference of 77 ms) and accompanied by 
higher levels of confidence (mean difference of 0.10 on a 
0–1 scale). Unlike in Exp. 1, here we found no evidence for 
a difference in metacognitive sensitivity between ‘yes’ and 
‘no’ responses (mean difference of 0.02 in AUC units). No 
asymmetries were observed between the two discrimination 
responses. For a detailed statistical analysis, see Appendix.

Fig. 7   Reverse correlation, Exp. 2. Same conventions as in Fig. 5. (Colour figure online)
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Reverse correlation  Stimuli in Exp. 2 consisted of two 
flickering patches, each comprising four gray bars pre-
sented for 12 frames. Together, this summed to 96 random 
luminance values per trial, which we subjected to reverse 
correlation analysis, following the analysis procedure of 
Exp. 2 in Zylberberg et al. (2012).

Discrimination decisions  First, we asked whether ran-
dom fluctuations in luminance influenced discrimination 
responses. Similar to the results obtained by Zylberberg et. 
al., discrimination decisions were sensitive to fluctuations in 
relative evidence (the difference in mean luminance between 
the left and right stimulus) during the first 300 ms of the 
trial (Erelative; t(100) = 14.29, p < .001; see Fig. 7A, orange 
curve). Furthermore, participants’ decisions were surpris-
ingly more sensitive to evidence in the nontarget stimu-
lus within the same time window, resulting in a negative 
effect of sum evidence (Esum; t(100) =  − 2.29, p = .024; see 
Fig. 7A, black curve). Importantly, this negative effect of 
sum evidence on decision accuracy was not replicated in 
Exps. 3 and 4, and we do not interpret it further.

Discrimination confidence  Similar to Exp. 1, we observed 
a significant effect of positive (Econf − chosen; t(100) = 6.76, 
p < .001), and negative (Econf − unchosen; t(100) =  − 4.28, 
p < .001), evidence on decision confidence within the first 
300 ms of the stimulus (see Fig. 7B). When plotting the 
sum-evidence kernel, we observed an initial negative dip 
followed by a sustained positive effect of sum evidence on 
decision confidence, consistent with a positive evidence bias 
(Econf − sum; t(100) = 2.56, p = .012; see Fig. 7C, black curve).

Detection  Participants’ detection decisions were sensitive 
to fluctuations in the luminance of the target stimulus, such 
that ‘yes’ responses were associated with a brighter target 
stimulus (Edetection − s; t(101) = 9.39, p < .001; see Fig. 7D, 
blue curve). Similar to Exp. 1, and in contrast to the behav-
iour of Bayes-rational simulated agents, the luminance of the 
nontarget stimulus had a negative effect on the probability 
of responding ‘yes’ (Edetection − n; t(101) =  − 4.64, p < .001; 
see Fig. 7D, red curve).

Confidence in detection ‘yes’ responses was similarly 
sensitive to fluctuations in the luminance of the target stim-
ulus (Econf − yes − s; t(99) = 4.27, p < .001; see Fig. 7F, blue 
curve). Again, brighter nontarget stimuli made participants 
less, rather than more, confident in the presence of a sig-
nal (Econf − yes − n; t(99) =  − 4.98, p < .001; see Fig. 7F, red 
curve). As in Exp. 1, here, too, sum evidence (overall lumi-
nance) had no significant effect on confidence in detection 
‘yes’ responses (Econf − yes − sum; t(99) =  − 0.28, p = .784; see 
Fig. 7G, black curve). However, this surprising result was 
not replicated in Experiments 3 and 4.

Finally, unlike in Exp. 1, confidence in detection ‘no’ 
responses was sensitive to random fluctuations in the lumi-
nance of the target, such that participants were more confi-
dent in the absence of a signal when the target stimulus was 
darker (Econf − no − s t(96) =  − 2.28, p = .025; see Fig. 7H). The 
overall luminance of the display also had a negative effect 
on confidence in detection ‘no’ responses (Econf − no − sum; 
t(96) =  − 2.04, p = .044; see Fig. 7I). The luminance of the 
nontarget stimulus (Econf − no − n; t(96) =  − 0.71, p = .482), 
and the difference in luminance between the two stimuli 
(Econf − no − relative; t(96) =  − 1.04, p = .301), had no significant 
effects on confidence in detection ‘no’ responses.

Experiment 3

In Exp. 3, we aimed to replicate our findings using a 
direct experimental manipulation in addition to employing 
reverse-correlation analysis. Our preregistered objectives 
(see our preregistration document: https://​osf.​io/​hm3fn/) 
were (1) to replicate a positive evidence bias in discrimi-
nation confidence, (2) to replicate a positive evidence bias 
in detection decisions, and (3) to replicate the absence of a 
positive evidence bias in detection confidence.

Methods

Participants  The research complied with all relevant ethi-
cal regulations, and was approved by the Research Ethics 
Committee of University College London (study ID number 
1260/003). A total of 173 participants were recruited via 
Prolific (prolific.co) and gave their informed consent prior 
to their participation. They were selected based on their 
acceptance rate (>95%) and for being native English speak-
ers. Following our preregistration, we aimed to collect data 
until we had reached 100 included participants, based on 
our prespecified inclusion criteria (see https://​osf.​io/​hm3fn/). 
Our final data set includes observations from 100 included 
participants. The entire experiment took around 20 minutes 
to complete. Participants were paid £2.50 for their participa-
tion, equivalent to an hourly wage of £7.50.

Experimental paradigm  A static demo of Exp. 3 is avail-
able on the proje​ct’s GitHub. Experiment 3 was identical to 
Experiment 2 with two changes. First, on half of the trials 
(high-luminance trials) the luminance of both sets of bars 
was increased by 2/255 for the entire duration of the display, 
thereby increasing sum evidence without affecting relative 
evidence. Second, in order to increase our statistical power 

https://osf.io/hm3fn/
https://osf.io/hm3fn/
https://matanmazor.github.io/reverseCorrelation/experiments/demos/Experiment3/
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for detecting response-specific effects in detection, partici-
pants performed four detection blocks and two discrimina-
tion blocks. Each block comprised 56 trials. The order of 
blocks was [detection, discrimination, detection, discrimina-
tion, detection, detection] for all participants.

Results

Decision accuracy  Overall proportion correct was 0.87 in the 
discrimination and 0.67 in the detection task. Performance 
in discrimination was significantly higher than in detection 
(MD = 0.21), 95% CI [0.19, 0.22], t(99) = 30.35, p < .001, as 
expected.

Overall properties of decision and confidence distribu‑
tions  Similar to Exps. 1 and 2, participants were more 
likely to respond ‘yes’ than ‘no’ in the detection task (mean 
proportion of ‘yes’ responses: 0.53). We did not observe a 
consistent response bias in the discrimination task (mean 
proportion of ‘right’ responses: 0.50). The two detection 
responses showed the typical asymmetries, with ‘yes’ 
responses being faster (median difference of 69 ms) and 
accompanied by higher levels of confidence (mean differ-
ence of 0.09 on a 0–1 scale). As in Exp. 1, metacognitive 
sensitivity was higher for ‘yes’ than for ‘no’ responses (mean 
difference of 0.03 in AUC units). No asymmetries were 
observed between the two discrimination responses. For a 
detailed statistical analysis, see Appendix.

Reverse correlation  We first focused on reverse correlation 
analyses, pooling data from both high-luminance and stand-
ard trials (after mean-centering luminance in each), in order 

to replicate the findings of Exps. 1 and 2. We note the results 
are qualitatively similar when including standard trials only, 
with the exception of confidence in detection ‘no’ responses 
(see Appendix).

Discrimination decisions  Discrimination decisions were 
sensitive to relative evidence during the first 300 ms of the 
trial (Erelative; t(99) = 19.17, p < .001; see Fig. 8A) with no 
effect of sum evidence (Esum;t(99) = 0.23, p = .817).

Discrimination confidence  Decision confidence was 
sensitive to positive (Econf − s; t(99) = 6.27, p < .001) and 
negative (Econf − n; t(99) =  − 5.29, p < .001) evidence 
within the first 300 ms of the stimulus (see Fig. 8B). 
Reverse correlation revealed no effect of random 
fluctuations in sum evidence on decision confidence 
(Econf − sum; t(99) = 0.75, p = .455), but an effect of sum 
evidence was found when directly contrasting high- and 
low-luminance trials, as we show in the “Evidence-
weighting” section below.

Detection  Participants’ detection decisions were sensitive 
to fluctuations in the luminance of the target stimulus, such 
that ‘yes’ responses were associated with brighter target 
stimuli (Edetection − s; t(99) = 13.01, p < .001; see Fig. 8D, 
blue curve). Replicating the surprising results of Exps. 1 
and 2, the luminance of the nontarget stimulus had a neg-
ative effect on the probability of responding ‘yes’ in the 
detection task (Edetection − n; t(99) =  − 8.91, p < .001; see 
Fig. 8D, red curve). Together, detection decisions were 
sensitive to relative evidence (Edetection − relative, or the dif-
ference in luminance between the target and nontarget 

Fig. 8   Reverse correlation, Exp. 3. Same conventions as in Fig. 5. (Colour figure online)
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stimuli; t(99) = 15.95, p < .001), and to sum evidence 
(Edetection − relative, or the overall luminance of the display; 
t(99) = 4.29, p < .001; see Fig. 8E, orange and black curves, 
respectively).

Confidence in detection ‘yes’ responses was similarly 
positively correlated with the luminance of the target 
stimulus (Econf − yes − s; t(99) = 8.37, p < .001), and nega-
tively correlated with the luminance of the nontarget stim-
ulus (Econf − yes − s; t(99) =  − 3.58, p = .001; see Fig. 8F). 
This is again in contrast to what is expected from a Bayes-
rational agent: the probability of being correct is posi-
tively correlated with evidence intensity in both signal 
and nonsignal channels. Recall that a surprising finding 
in Exps. 1 and 2 was that sum evidence (motion energy 
or luminance) had no effect on participants’ confidence 
in their judgments of stimulus presence. In contrast, in 
Exp. 3, sum luminance had a significant positive effect 
on decision confidence when reporting target presence 
(Econf − yes − sum; t(99) = 2.83, p = .006; see Fig. 8G, black 
curve).

Finally, and in line with what we observed in Exp. 2, con-
fidence in detection ‘no’ responses was sensitive to random 
fluctuations in the luminance of the target, such that partici-
pants were more confident in the absence of a signal when 
the target stimulus was darker (Econf − no − s; t(98) =  − 2.72, 
p = .008; see Fig. 8H). Relative evidence also had a margin-
ally significant negative effect on confidence in decisions 
about absence (Econf − no − relative; t(98) =  − 1.98, p = .050). The 
luminance of the nontarget stimulus and the overall lumi-
nance had no significant effects on confidence in detection 
‘no’ responses (ps > 0.3).

Evidence‑weighting  In Experiments 1 and 2, confidence 
in signal presence was invariant to sum evidence (overall 
motion energy in Exp.1, sum luminance in Exp. 2). This was 
surprising for two reasons. First, in both cases sum evidence 
did have a significant effect on detection decisions. Second, 
incorporating information about sum evidence into confi-
dence in the presence of a stimulus is rational: A target stimu-
lus is more likely to be present (in either location) when both 
target and nontarget stimuli are brighter compared with when 
both are dark. As we document above, however, the coun-
terintuitive findings of Exps. 1 and 2 only partly replicated 
in Exp. 3: subjects still negatively weighted the luminance 
of the nontarget stimulus (despite this being irrational), but 
this negative effect was weaker than the positive effect of the 
luminance of the target stimulus, resulting in an overall posi-
tive effect of sum evidence on detection confidence.

To shed further light on this issue, in Exp. 3, half of the 
trials were manipulated to include slightly brighter stimuli, 
thereby increasing statistical power for tests of the effects of 
sum luminance on discrimination and detection decisions 
and confidence.

First, we established that participants were more likely 
to respond ‘yes’ on higher compared with lower luminance 
trials (M = 0.09), 95% CI [0.07, 0.11], t(99) = 8.73, p < .001, 
consistent with overall luminance providing a valid cue for 
signal presence.

We next turned to the effects of our luminance manipu-
lation on confidence. For discrimination judgments, par-
ticipants were also more confident in higher compared with 
lower luminance trials (M = 0.02), 95% CI [0.01, 0.03], 
t(99) = 3.20, p = .002 (see Fig. 9A), replicating a positive 

Fig. 9   Difference in confidence between standard and higher evi-
dence (luminance and hue) trials for the three response categories 
(detection ‘yes’ and ‘no’ responses, and discrimination responses) 
in Exps. 3 and 4. Box edges and central lines represent the 25, 50, 

and 75 quantiles. Whiskers cover data points within four interquartile 
ranges around the median. Stars represent significance in a two-sided 
t test: **p < .01, ***p < .001. (Colour figure online)
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evidence bias in discrimination confidence. For detection 
judgments, in line with the reverse correlation analysis of 
Exp. 3 (and in contrast to the findings of Experiments 1 
and 2), participants were more confident in their ‘yes’ 
responses when overall luminance was higher (M = 0.02), 
95% CI [0.01, 0.03], t(99) = 3.00, p = .003. Our preregistered 
Bayesian analysis provided strong evidence for the alter-
native hypothesis that detection confidence is affected by 
this manipulation (BF10 = 10.57). Furthermore, this increase 
in confidence in presence as a function of the brightness 
manipulation was not significantly different from that 
observed for discrimination confidence (M =  − 0.01), 95% 
CI [−0.03, 0.01], t(99) =  − 0.57, p = .573. Finally, and in line 
with Exp. 2, overall luminance had a significant negative 
effect on confidence in ‘no’ responses (M =  − 0.02), 95% 
CI [−0.03, −0.01], t(99) =  − 3.09, p = .003, indicating that 
participants were more confident in the absence of a target 
when overall luminance was lower.

Experiment 4

A limitation of Exps. 2 and 3 is that apparent asymmetries in 
the weighting of positive and negative evidence may result 
from a nonlinear mapping between luminance in RGB space 
and screen brightness.2 For example, a dark bar that is −2 
RGB units from the mean does not necessarily cancel out 
a bright bar that is +2 RGB units from the mean (unless 
working with a gamma-corrected monitor), making positive 
evidence objectively more salient than negative evidence.

To address this concern, we include an additional experi-
ment where evidence is sampled from a perceptually uni-
form space. Specifically, Exp. 4 was similar to Exp. 3 with 
the exception that flickering stimuli varied in their hue rather 
than luminance, and where hue values were sampled from 
a Gaussian distribution in the CIE L*a*b* colour space. 
Moreover, the roles of ‘target’ and ‘nontarget’ hues were 
counterbalanced between participants, such that any built-
in asymmetries in the perception of positive and negative 
evidence should cancel out at the group level.

Methods

Participants  The research complied with all relevant ethi-
cal regulations, and was approved by the Research Ethics 
Committee of University College London (study ID number 
1260/003). A total of 117 participants were recruited via 
Prolific (prolific.co), and gave their informed consent prior 

to their participation. They were selected based on their 
acceptance rate (>95%) and for being native English speak-
ers. Following our preregistration, we aimed to collect data 
until we had reached 100 included participants, based on 
our prespecified inclusion criteria (see https://​osf.​io/​9zbpc). 
Our final data set includes observations from 100 included 
participants. The entire experiment took around 20 minutes 
to complete. Participants were paid £2.50 for their participa-
tion, equivalent to an hourly wage of £7.50.

Experimental paradigm  A static demo of Exp. 4 is avail-
able on the proje​ct’s GitHub. Experiment 4 was identical to 
Experiment 3, with two changes. First, flickering bars varied 
in hue, randomly sampled from a Gaussian distribution in 
the CIE L*a*b* colour space, centred at L = 54, a = 21.5 
and b = 11.5, with a radius of 49 (Schurgin et al., 2020). 
For half of the participants, nontarget hues were sampled 
around an orientation of 1.85 radians with a standard devia-
tion of 0.35, and target hues were sampled around an orien-
tation of 2.1 with a standard deviation of 0.35. For the first 
group, target patches were little more orange than nontarget 
patches, and for the second group target patches were little 
more green than nontarget patches. To make sure nontarget 
patches were perceived as the absence of signal relative to 
the background, the RSVP display was overlaid on top of a 
rectangle with the mean colour of a nontarget patch. Second, 
in order to avoid interference with the colour-judgment task, 
the confidence circle was presented in gray. Third, subjects 
were allowed to repeat the multiple-choice questions up 
to three times. Finally, in addition to trial-wise feedback, 
block-wise feedback about overall performance and mean 
confidence in correct and incorrect responses was displayed 
at the end of each block.

Results

Decision accuracy  Overall proportion correct was 0.92 in the 
discrimination and 0.74 in the detection task. Performance 
in discrimination was significantly higher than in detec-
tion (ΔM = 0.18), 95% CI [0.16, 0.20], t(199.32) = 16.52, 
p < .001, as expected.

Overall properties of decision and confidence distribu‑
tions  Similar to Exps. 1–3, participants were more likely 
to respond ‘yes’ than ‘no’ in the detection task (mean pro-
portion of ‘yes’ responses: 0.52). A slight response bias 
in discrimination was not significant (mean proportion 
of ‘right’ responses: 0.51). The two detection responses 
showed the typical asymmetries, with ‘yes’ responses being 
faster (median difference of 48 ms) and accompanied by 
higher levels of confidence (mean difference of 0.07 on 
a 0–1 scale). A mean difference of 0.03 in metacognitive 2  We thank an anonymous reviewer for bringing this issue to our 

attention.

https://osf.io/9zbpc
https://matanmazor.github.io/reverseCorrelation/experiments/demos/Experiment4/
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sensitivity (AUC units) was not significant. For a detailed 
statistical analysis, see Appendix.

Reverse correlation

Discrimination decisions  Discrimination decisions were 
sensitive to relative evidence during the first 300 ms of the 
trial (Erelative; t(102) = 10.23, p < .001; see Fig. 10A). Sum 
evidence had a positive effect on discrimination decisions, 
such that subjects were more likely to correctly select the 
target stimulus when the overall hue of both stimuli together 
was closer to the target hue (Esum; t(102) = 2.31, p = .023).

Discrimination confidence  Decision confidence was sen-
sitive to positive (Econf − chosen; t(108) = 6.00, p < .001) and 
negative (Econf − unchosen ;t(108) =  − 3.94, p < .001) evidence 
within the first 300 ms (see Fig. 10B). The effect of sum 
evidence on decision confidence was only marginally sig-
nificant (Econf − sum; t(108) = 1.92, p = .058). An effect of sum 
evidence was found when directly contrasting high- and low-
evidence trials, as we show in the “Evidence-weighting” sec-
tion below.

Detection  Participants’ detection decisions were sensitive 
to fluctuations in the hue of the target stimulus (Edetection − s; 
t(101) = 10.65, p < .001; see Fig. 10D, blue curve). Fluc-
tuations in the hue of the nontarget stimulus had the oppo-
site effect on detection decisions, replicating again our 
main finding from Exps. 1–3 (Edetection − n; t(101) =  − 4.22, 
p < .001; see Fig. 10D, red curve).

Confidence in detection ‘yes’ responses was positively 
sensitive to fluctuations in the hue of the target (Econf − yes − s; 

t(99) = 6.08, p < .001), and negatively sensitive to fluc-
tuations in the hue of the nontarget stimulus (Econf − yes − n; 
t(99) =  − 2.63, p = .010; see Fig. 13F). Similar to Exp. 3, 
here, too, sum evidence (deviation from the background 
hue toward the target hue) had a significant positive effect 
on decision confidence when reporting target presence 
(Econf − yes − sum; t(99) = 2.64, p = .010; see Fig. 10G).

Finally, confidence in detection ‘no’ responses was sen-
sitive to random fluctuations in the hue of the target, such 
that participants were more confident in the absence of a 
signal when the target stimulus was closer in hue to the back-
ground (Econf − no − s; t(97) =  − 2.23, p = .028; see Fig. 10H). 
Sum evidence (the overall hue of the display) had a marginal 
negative effect on confidence in absence (t(97) =  − 1.95, 
p = .054). Relative evidence and negative evidence had no 
significant effects on confidence in detection ‘no’ responses 
(ps > 0.3).

Evidence‑weighting  As in Exp. 3, on half of the trials 
(‘high-evidence’ trials), the hue of both patches was 
slightly shifted in the direction of the target stimulus (that 
is, made greener if the target stimulus was greener than 
the nontarget stimulus, or more orange otherwise). This 
allowed us to directly measure how sum evidence affects 
both detection decisions, and detection and discrimination 
confidence ratings. Overall, we obtained a similar pattern 
to Exp. 3: on high-evidence trials, participants were more 
likely to respond ‘yes’ in the detection task (M = 0.17, 95% 
CI [0.15, 0.19], t(101) = 17.39, p < .001), and became more 
confident in their discrimination judgments (M = 0.02, 
95% CI [0.01, 0.03], t(109) = 3.75, p < .001), more con-
fident in their detection ‘yes’ responses (M = 0.03, 95% 

Fig. 10   Reverse correlation, Exp. 4. Same conventions as in Fig. 5. (Colour figure online)
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CI [0.02, 0.04], t(101) = 4.76, p < .001), and less con-
fident in detection ‘no’ responses (M =  − 0.04, 95% CI 
[−0.05, −0.03], t(101) =  − 6.34, p < .001; see Fig. 9B). 
Our preregistered Bayesian analysis provided strong evi-
dence for the alternative hypothesis that detection confi-
dence is affected by sum evidence (BF10 = 2547.94). One 
difference in comparison to Exp. 3 was that in Exp. 4 the 
increase in ‘yes’ response confidence as a function of 
the hue manipulation was significantly stronger than that 
observed for discrimination confidence (M =  − 0.02, 95% 
CI [−0.04, −0.01], t(101) =  − 2.61, p = .011).

Discussion

In four experiments, we compared the drivers of decisions 
and confidence ratings in perceptual discrimination and 
detection, in conditions either matched for difficulty (Exp. 
1) or signal strength (Exps. 2–4). In order to measure the 
contribution of perceptual evidence to confidence in detec-
tion and discrimination judgments, we followed Zylberberg 
et al. (2012) in applying reverse correlation analysis to noisy 
stimuli in perceptual decision-making tasks. We fully rep-
licated the main results of Zylberberg and colleagues: deci-
sions and confidence were affected by perceptual evidence 
in the first 300 ms of the trial, peaking at around 200 ms. We 
also successfully replicated a positive evidence bias (PEB) 
for discrimination confidence: confidence in the discrimina-
tion task was more affected by supporting than by conflicting 
evidence—a pattern which may be indicative of a detection-
like decision rule operating for discrimination confidence. 
This effect was qualitatively accounted for by two Bayes-
rational decision-making models: a firing rate model, in 
which perceptual noise was stimulus dependent (inspired by 
Miyoshi & Lau, 2020), and a goal-directed attention model 
(inspired by Sepulveda et al., 2020).

These same two models also made corresponding predic-
tions for the detection task: When attempting to detect signal 
presence in either channel, decisions and confidence ratings 
should positively weigh evidence for both alternatives (e.g., 
motion energy to the right and to the left). Paradoxically, 
however, in the detection task subjects adopted a discrim-
ination-like disposition, negatively weighing evidence in 
the nonsignal channel. In other words, subjects were less 
likely to say a target was present (in either channel) when 
the weaker channel had more evidence. In Exps. 1 and 2, this 
negative weighting of evidence in the nonsignal channel was 
strong enough to bring the effect of sum evidence on detec-
tion confidence down to zero (as the surprising negative 
effect of nonsignal evidence canceled out the expected posi-
tive influence of signal evidence on detection probability). 
This negative weighting of evidence in the nonsignal chan-
nel remained significant in Experiments 3 and 4, although 
was now somewhat weaker than the positive weighting of 

the evidence in the signal channel, leading to an overall 
sum evidence effect on detection probability. Overall, then, 
subjects incorporated detection-relevant evidence into their 
confidence in discrimination judgments, and discrimination-
relevant evidence into their detection judgments and confi-
dence ratings.

What drives these discrimination-like evidence weighting 
profiles in detection? In Experiments 3 and 4, one expla-
nation is that our evidence-boost manipulation may have 
rendered it rational for subjects to focus on the difference in 
evidence between the two sensory channels. If on a random 
subset of trials both stimuli are made brighter, focusing on 
overall brightness is not as informative as focusing on the 
contrast between the brightness of the two stimuli, which 
remains unaffected by the evidence-boost manipulation. This 
account fails to explain, however, the emergence of a nega-
tive effect of evidence in the nonsignal channel in Experi-
ments 1 and 2, where the evidence-boost manipulation was 
not applied and where a rational agent should have positively 
weighted evidence from both channels.

Alternatively, changes to the global perception of overall 
stimulus intensity may have an internal source. For exam-
ple, slow brain oscillations in the alpha band affect both 
detection criterion and discrimination confidence but have 
minimal effects on discrimination sensitivity: a nonselec-
tive effect on perception which has been attributed to a 
global change in the baseline firing rate of sensory neurons 
(Samaha et al., 2020). Similar to our evidence-boost manipu-
lation, an overall increase in baseline firing rate increases 
sum evidence without affecting relative evidence. If agents 
do not have metacognitive access to the current excitabil-
ity of their perceptual system but do know that such global 
effects exist, focusing on relative evidence in detection may 
be a rational way of dealing with this ambiguity of baseline 
excitability. This account fails to explain, however, why sub-
jects in Exps. 2–4 did not use the static background rather 
than the nontarget stimulus as a reference point, given that it 
is presumably also susceptible to perceptual influences from 
global changes in the baseline firing rate of sensory neurons.

Finally, it may be that evidence accumulation in detection 
and discrimination depends on shared processes and internal 
representations. Outside of a laboratory setting, detectability 
and discriminability mostly go hand in hand; the farther away 
from ‘nothing’ a representation is, the more distinct and dif-
ferentiated from other representations it becomes. Given these 
meta-level expectations about the distribution of evidence in 
the world, the overall availability of evidence may be a valid 
cue for confidence in discrimination judgments (Maniscalco 
et al., 2016). Conversely, asymmetries in the availability of 
evidence for two competing hypotheses may serve as a valid 
cue for the presence of signal in one of the channels.

If discrimination confidence and detection decisions are 
drawing on shared evidence weighting mechanisms, one 
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might expect that person-specific tendencies to rely more 
on one or other evidence channel will be correlated across 
both tasks. For example, subjects whose discrimination con-
fidence was strongly affected by sum evidence (or equiva-
lently, showed a pronounced positive evidence bias), may 
also be sensitive to sum evidence in their detection deci-
sions and confidence. Surprisingly, however, we find no evi-
dence for such an effect (see Appendix). Across subjects, 
the effects of positive, negative, sum and relative evidence 
on discrimination confidence were not reliably correlated 
with their corresponding effects on detection decisions, nor 
with their effects on confidence in signal presence. This null 
result should be interpreted with caution: our experiments 
were not powered to identify correlations between partici-
pants, with Exp. 1 adopting a small-N, many-trials design, 
and Experiments 2–4 a high-N, few-trials design, with the 
attendant limitation of noisy single-subject estimates. Thus 
while our current results do not directly support a shared-
resources account, they are not inconsistent with it.

Conclusion

In four experiments, we replicated previous findings of a 
“positive evidence bias”: a detection-like evidence weight-
ing in discrimination confidence. This pattern was accounted 
for by models that posit asymmetries either in the distri-
butions of sensory noise or allocation of attention between 
target and nontarget channels. However, these same models 
could not account for a surprising finding of discrimination-
like evidence weighting in detection decisions and confi-
dence. We suggest that these seemingly irrational positive 
and negative evidence biases may reflect, at least in part, 
shared representational resources being harnessed for detec-
tion decisions and discrimination confidence.
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Appendix

Additional analyses: Exp. 1

Response time, confidence, and metacognitive sensitivity 
differences

In detection, participants were generally slower to deliver ‘no’ 
responses compared with ‘yes’ responses (median difference: 
85.37 ms, t(9) =  − 3.46, p = .007, for a t test on the log-trans-
formed response times). No significant difference in response 
times was observed for the discrimination task (median differ-
ence: 6.16 ms, t(9) =  − 0.43, p = .676, see Fig. A1).

Confidence in detection was generally higher than in discrim-
ination (MD = 0.06, 95% CI [0.01, 0.12], t(9) = 2.49, p = .035). 
Within detection, confidence in ‘yes’ responses was gener-
ally higher than confidence in ‘no’ responses (M = 0.08; 95% 
CI [0.03, 0.13], t(9) = 3.49, p = .007). No difference in average 
confidence levels was found between the two discrimination 
responses (M = 0.02, 95% CI [−0.03, 0.06], t(9) = 0.91, p = .384).

Following Meuwese et al. (2014), we extracted response-
conditional Type 2 ROC (rc-ROC) curves for the two tasks. 
For different values of x ∈ [0, 1], we plotted p(confidence ≥ x) 
for correct against incorrect responses, separately for the two 
response options. Unlike traditional Type 1 ROC curves that 
provide a summary of subjects’ ability to distinguish between 
two external world states, Type 2 ROC curves represent their 
ability to track the accuracy of one’s own responses. The 
area under the response-conditional ROC curve (auROC2) 
is a measure of metacognitive sensitivity, with higher values 
corresponding to more accurate metacognitive monitoring.

Mean response-conditional ROC curves for the two 
responses in the discrimination task closely matched 
(M = 0.00, 95% CI [−0.05, 0.05], t(9) = 0.13, p = .900), indi-
cating that on average, participants had similar metacog-
nitive insight into the accuracy of the two discrimination 
responses. In contrast, auROC2 estimates for ‘yes’ responses 
were significantly higher than for ‘no’ responses, indicat-
ing a metacognitive asymmetry between the two detection 
responses (group difference in auROC2: M = 0.11, 95% CI 
[0.03, 0.18], t(9) = 3.28, p = .010).

zROC curves

A difference in response-conditional auROC2 estimates 
can emerge from higher-order differences in metacognitive 
monitoring for the two responses and/or from lower-level 
differences in the perceptual representations of signal and 
noise (such as in first-order signal detection models where the 
signal variance is higher; Maniscalco & Lau, 2014). Impor-
tantly, a difference can also emerge in first-order signal-detec-
tion models that assume equal variance, in the presence of a 
response bias or insufficient variance in confidence ratings 
(Mazor et al., 2021). To test whether the metacognitive asym-
metry between ‘yes’ and ‘no’ responses could be accounted 
for by an equal-variance SDT model, we simulated data that 
were identical to our empirical data except for confidence 
ratings in correct responses, which were chosen to perfectly 
agree with the assumptions of an equal-variance SDT model 
given participants’ decision criterion, sensitivity, and their 
confidence in incorrect responses. We then compared subject-
wise differences between the response-conditional auROCs 
with the differences in this simulated data set (Mazor et al., 
2021). The difference in differences was significant, indicat-
ing that the observed metacognitive asymmetry could not 
be accounted for by a first-order equal-variance SDT model 
(M = 0.08, 95% CI [0.02, 0.14], t(9) = 2.96, p = .016).

An asymmetry in metacognitive sensitivity for ‘yes’ and 
‘no’ responses is also predicted by unequal-variance signal 
detection theory (uvSDT). Specifically, if the signal distribu-
tion is wider than the noise distribution, the overlap between 
the distributions will be more pronounced for misses and 
correct rejections than for hits and false alarms, making 

Fig. A1   Behavioural asymmetries in metacognitive sensitivity, 
response time, and overall confidence in detection (upper panel) and 
discrimination (lower panel), in Exp. 1. Left: Response conditional 
Type 2 ROC curves for the two tasks and four responses in Exp. 1. 
The area under the Type 2 ROC curve is a measure of metacognitive 
sensitivity, and the difference in areas between the two responses a 
measure of metacognitive asymmetry. Single-subject curves are pre-
sented in low opacity. Right: Distributions of the area under the Type 
2 ROC curve, median response time, and mean confidence for the 
four responses, across participants. Box edges and central lines rep-
resent the 25, 50, and 75 quantiles. Whiskers cover data points within 
four interquartile ranges around the median. Stars represent signifi-
cance in a two-sided t test: **p < .01, ***p < .001. (Colour figure 
online)
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metacognitive judgments for ‘no’ responses objectively more 
difficult. Unequal-variance SDT predicts that plotting the 
Type 1 ROC curve in z-space (taking the inverse cumulative 
distribution of the confidence rating histogram) will result in 
a straight line with a slope equal to �noise

�signal
 . Because the vari-

ance of the signal distribution is higher than that of the noise 
distribution, zROC slopes are typically shallow, with slopes 
below 1.

To obtain an unbiased measure of zROC slopes while 
controlling for underestimation of the slope due to regres-
sion to the mean (Wickens, 2002, p. 56), we used total least 
squares estimation (Li et al., 2018). In equal-variance SDT, 
the natural logarithm of the zROC slope is predicted to be 
0, corresponding to a slope of 1.

Detection zROC slopes were generally shallower 
than 1 (as predicted by an unequal-variance SDT model; 
M =  − 0.16, 95% CI [−0.28, −0.04], t(9) =  − 2.96, p = .016), 
and not significantly different from 1 for discrimination 
zROC curves (as predicted by equal-variance SDT; M = 0.00, 
95% CI [−0.10, 0.10], t(9) = 0.06, p = .951).

These results support a difference in the variance-struc-
ture of the representation of signal and noise, such that 
the representation of signal is more variable across trials. 
However, it is still possible that some of the metacognitive 
asymmetry in detection (the difference in auROC2 between 
‘yes’ and ‘no’ responses) reflects additional processes that 
cannot be captured by a first-order signal-detection model. 
If this was the case, zROC curves for detection should not 
only be shallower but also less linear than for discrimination, 
reflecting poorer fit of the signal-detection model to detec-
tion. To test if this was the case, we compared the subject-
wise R2 values for the detection and discrimination zROC 
regression lines. R2 values reflect the goodness of fit of a 
linear model to the data. These values were similar for the 
two tasks (MD =  − 0.01, 95% CI [−0.03, 0.01], t(9) =  − 0.91, 
p = .385), suggesting that a first-order SDT model accounted 
equally well for the data from both tasks.

Confidence–RT correlations

Following our preregistered analysis plan, we extracted a 
Spearman correlation coefficient between confidence and 
response times separately for the two tasks and four responses. 
We find a negative correlation in all four cases (discrimination 
responses: −0.40 and −0.39, detection ‘yes’: −0.41, detection 
‘no’: −0.33). As hypothesized, this negative correlation was 
significantly attenuated in detection ‘no’ responses compared 
with detection ‘yes’ responses (tested with a one-tailed t test; 
t(9) =  − 1.97, p = .040). The difference in correlation strength 
between detection ‘no’ responses and discrimination responses 
was only marginally significant (t(9) =  − 1.68, p = .063).

Global metacognitive estimates

At the end of each 100-trial block, participants estimated their 
block-wise accuracy. Mean estimated accuracy was 0.71 for 
discrimination and 0.69. These figures are close to true correct 
response rates: 0.74 in discrimination and 0.72 in detection.

A difference of 0.02 between mean accuracy estimates for 
discrimination and detection was not significant at the group 
level (t(9) = 1.22, p = .254).

Additional analyses: Exp. 2

Response time, confidence, and metacognitive sensitivity 
differences

Participants were slower to deliver ‘no’ responses com-
pared with ‘yes’ responses (median difference: 77.12 ms, 
t(101) =  − 6.84, p < .001 for a t test on the log-transformed 
response times; see Fig. A2). No significant difference in 
response times was observed for the discrimination task 
(median difference: 10.90 ms; t(101) =  − 1.40, p = .165).

Confidence in detection was generally lower than in 
discrimination, consistent with lower accuracy in this task 
(MD =  − 0.09; 95% CI [−0.11, −0.07], t(101) =  − 8.41, 
p < .001). Within detection, confidence in ‘yes’ responses 
was generally higher than confidence in ‘no’ responses 
(M = 0.10, 95% CI [0.07, 0.12], t(101) = 8.15, p < .001). 
No difference in average confidence levels was observed 

Fig. A2   Behavioural asymmetries in metacognitive sensitivity, 
response time, and overall confidence, in Exp. 2. Same conventions as 
in Fig. A1. (Colour figure online)
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between the two discrimination responses (M = 0.00, 95% 
CI [−0.02, 0.02], t(101) =  − 0.03, p = .974).

In contrast to the results of Exp. 1, auROC2 values for 
‘yes’ and ‘no’ responses were not significantly different 
(group difference in area under the response-conditional 
curve, auROC2: M = 0.02, 95% CI [−0.02, 0.06], t(58) = 1.13, 
p = .264). auROC2s were also not significantly different 
when controlling for Type 1 response and confidence biases 
(M = 0.01, 95% CI [−0.03, 0.05], t(58) = 0.59, p = .560).

zROC curves

Unlike in Experiment 1, detection zROC slopes were 
not significantly different from 1 (M =  − 0.04, 95% CI 
[−0.09, 0.01], t(100) =  − 1.53, p = .130), whereas dis-
crimination zROC slopes were significantly shallower 
than 1 (M =  − 0.15, 95% CI [−0.30, −0.01], t(93) =  − 2.14, 
p = .035). This unexpected result indicates equal variance 
for the signal and noise distributions, but higher variance for 
targets presented on the right than on the left. Furthermore, 
a first-order SDT model fitted the data significantly better 
for the detection task than for the discrimination (differ-
ence in R2 for the two tasks: M = 0.15, 95% CI [0.12, 0.18], 
t(93) = 8.85, p < .001).

Confidence–RT correlations

Following our preregistered analysis plan, we extracted 
a Spearman correlation coefficient between confidence 
and response times separately for the two tasks and four 
responses. We find a negative correlation in all four cases 
(discrimination responses: −0.41 and −0.45, detection 
‘yes’: −0.32, detection ‘no’: −0.21). This negative correla-
tion was significantly attenuated in detection ‘no’ responses 
compared with detection ‘yes’ responses (tested with a one-
tailed t test: t(100) =  − 3.78, p < .001). The difference in cor-
relation strength between detection ‘no’ responses and dis-
crimination responses was also significant, t(100) =  − 7.79, 
p < .001).

Additional analyses: Exp. 3

Response time, confidence, and metacognitive sensitivity 
differences

Participants were slower to deliver ‘no’ responses com-
pared with ‘yes’ responses (median difference: 68.90 
ms, t(99) =  − 6.36, p < .001 for a t test on the log-trans-
formed response times; see Fig. A3). No significant dif-
ference in response times was observed for the discrimi-
nation task (median difference: 11.28 ms, t(98) = 0.11, 
p = .912).

Confidence in detection was generally lower than in 
discrimination, consistent with lower accuracy in this 
task (MD =  − 0.04, 95% CI [−0.06, −0.02], t(99) =  − 3.87, 
p < .001). Within detection, confidence in ‘yes’ responses 
was generally higher than confidence in ‘no’ responses 
(M = 0.09, 95% CI [0.07, 0.11], t(99) = 8.19, p < .001). 
No difference in average confidence levels was observed 
between the two discrimination responses (M =  − 0.01, 95% 
CI [−0.03, 0.01], t(99) =  − 0.74, p = .460).

Within detection, metacognitive sensitivity was higher for 
‘yes’ responses (group difference in area under the response-
conditional curve, auROC2: M = 0.03, 95% CI [0.01, 0.06], 
t(53) = 2.75, p = .008). auROC2s were also marginally dif-
ferent when controlling for Type 1 response and confidence 
biases (M = 0.03, 95% CI [0.00, 0.05], t(53) = 1.92, p = .061).

zROC curves

As expected, detection zROC slopes were significantly 
shallower than 1 (M =  − 0.08, 95% CI [−0.11, −0.05], 
t(99) =  − 5.16, p < .001), whereas discrimination zROC 
slopes were not different from 1 (M =  − 0.07, 95% CI 
[−0.23, 0.09], t(91) =  − 0.90, p = .368). Furthermore, a 
first-order SDT model fitted the data significantly better 
for the detection than for the discrimination task (differ-
ence in R2 for the two tasks: M = 0.20, 95% CI [0.17, 0.23], 
t(91) = 12.42, p < .001).

Fig. A3   Behavioural asymmetries in metacognitive sensitivity, 
response time, and overall confidence, in Exp. 3. Same conventions as 
in Fig. A1. (Colour figure online)
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Confidence–RT correlations

We extracted a Spearman correlation coefficient between 
confidence and response times separately for the two tasks 
and four responses. We find a negative correlation in all four 
cases (discrimination responses: −0.37 and −0.45, detection 
‘yes’: −0.30, detection ‘no’: −0.25). This negative correla-
tion was significantly attenuated in detection ‘no’ responses 
compared with detection ‘yes’ responses (tested with a one-
tailed t test: t(99) =  − 2.03, p = .023). The difference in cor-
relation strength between detection ‘no’ responses and dis-
crimination responses was also significant (t(99) =  − 5.86, 
p < .001).

Reverse correlation analysis of standard trials only

In the following, we repeat the reverse correlation analy-
sis reported for Exp. 3, but here restricted to the subset of 
“standard” trials where luminance was not increased by 
2/255.

Discrimination decisions  Discrimination decisions were 
sensitive to relative evidence during the first 300 ms of the 
trial (t(95) = 13.16, p < .001) with no effect of sum evidence 
(t(95) = 0.17, p = .867).

Discrimination confidence  Decision confidence was sen-
sitive to positive (t(99) = 6.21, p < .001) and negative 
(t(99) =  − 3.37, p = .001), evidence within the first 300 ms 
of the stimulus. The effect of sum evidence on decision 
confidence was not significant in this sample (t(99) = 1.40, 
p = .165).

Detection  Participants’ detection decisions were sensitive to 
fluctuations in the luminance of the target stimulus, such that 
‘yes’ responses were associated with brighter target stimuli 
(t(99) = 10.31, p < .001). The luminance of the nontarget 
stimulus had a negative effect on the probability of respond-
ing ‘yes’ in the detection task (t(99) =  − 5.35, p < .001). 
Together, detection decisions were sensitive to relative 
evidence (the difference in luminance between the target 
and nontarget stimuli; t(99) = 11.59, p < .001), and to sum 
evidence (the overall luminance of the display t(99) = 4.09, 
p < .001).

Confidence in detection ‘yes’ responses was similarly 
positively correlated with the luminance of the target stim-
ulus (t(99) = 5.62, p < .001) and negatively correlated with 
the luminance of the nontarget stimulus (t(99) =  − 3.07, 
p = .003). Sum luminance had a significant positive effect 
on decision confidence when reporting target presence (‘yes’ 
responses, t(99) = 2.07, p = .041).

Finally, confidence in detection ‘no’ responses was not 
sensitive to random fluctuations in the luminance of the 

target (t(95) =  − 0.67, p = .503), and nontarget stimulus 
(t(95) =  − 0.02, p = .984), nor to the overall luminance of 
the display (t(95) =  − 0.48, p = .631), or the difference in 
luminance between the two stimuli (t(95) =  − 0.47, p = .637).

Additional analyses: Exp. 4

Response time, confidence, and metacognitive sensitivity 
differences

Participants were slower to deliver ‘no’ responses com-
pared with ‘yes’ responses (median difference: 48.03 ms; 
t(101) =  − 4.34, p < .001, for a t test on the log-transformed 
response times; see Fig. A4). No significant difference in 
response times was observed for the discrimination task 
(median difference: 29.77 ms, t(109) = 0.50, p = .617).

Confidence in detection was generally lower than in 
discrimination, consistent with lower accuracy in this task 
(ΔM =  − 0.08, 95% CI [−0.13, −0.02], t(208.94) =  − 2.86, 
p = .005). Within detection, confidence in ‘yes’ responses 
was generally higher than confidence in ‘no’ responses 
(M = 0.07, 95% CI [0.05, 0.10], t(101) = 5.97, p < .001). 
Within discrimination, confidence in ‘yes’ responses was 
overall higher (M = 0.03, 95% CI [0.01, 0.05], t(109) = 2.48, 
p = .015).

Within detection, metacognitive sensitivity was numeri-
cally, but not significantly, higher for ‘yes’ responses (group 
difference in area under the response-conditional curve, 

Fig. A4   Behavioural asymmetries in metacognitive sensitivity, 
response time, and overall confidence, in Exp. 4. Same conventions as 
in Fig. A1. (Colour figure online)
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auROC2: M = 0.03, 95% CI [−0.01, 0.07], t(25) = 1.36, 
p = .185). This was the case also when controlling for 
Type 1 response and confidence biases (M = 0.03, 95% CI 
[−0.02, 0.07], t(25) = 1.25, p = .223).

zROC curves

As expected, detection zROC slopes were significantly 
shallower than 1 (M =  − 0.13, 95% CI [−0.18, −0.08], 
t(101) =  − 5.16, p < .001), whereas discrimination zROC 
slopes were not different from 1 (M = 0.05, 95% CI 
[−0.17, 0.28], t(68) = 0.48, p = .630). Furthermore, a first-
order SDT model fitted the data significantly better for 
the detection than for the discrimination task (difference 
in R2 for the two tasks: M = 0.31, 95% CI [0.26, 0.36], 
t(61) = 12.38, p < .001).

Confidence–RT correlations

We extracted a Spearman correlation coefficient between 
confidence and response times separately for the two tasks 
and four responses. We find a negative correlation in all 
four cases (discrimination responses: −0.38 and −0.36, 
detection ‘yes’: −0.37, detection ‘no’: −0.32). This nega-
tive correlation was significantly attenuated in detection 
‘no’ responses compared with detection ‘yes’ responses 
(tested with a one-tailed t test: t(101) =  − 2.35, p = .010). 
The difference in correlation strength between detection ‘no’ 
responses and discrimination responses was also significant 
(t(207.97) =  − 1.86, p = .032).

Reverse correlation analysis of standard trials only

In the following, we repeat the reverse correlation analysis 
reported for Exp. 4, but here restricted to the subset of “standard” 
trials where overall hue was not shifted toward the target hue.

Discrimination decisions  Discrimination decisions were 
sensitive to relative evidence during the first 300 ms of the 
trial (t(82) = 9.45, p < .001) with no effect of sum evidence 
(t(82) = 1.74, p = .086).

Discrimination confidence  Decision confidence was sen-
sitive to positive (t(107) = 5.32, p < .001) and negative 
(t(107) =  − 3.85, p < .001) evidence within the first 300 ms of 
the stimulus. The effect of sum evidence on decision confidence 
was not significant in this sample (t(107) = 1.36, p = .176).

Detection  Participants’ detection decisions were sensitive to 
fluctuations in the hue of the target stimulus (t(101) = 9.51, 
p < .001). The hue of the nontarget stimulus had a negative 

effect on the probability of responding ‘yes’ in the detection 
task (t(101) =  − 3.13, p = .002). Together, detection deci-
sions were sensitive to relative evidence (the difference in 
hue between the target and nontarget stimuli, t(101) = 9.13, 
p < .001), and to sum evidence (the overall evidence in hue-
space for the two stimuli together, t(101) = 4.92, p < .001).

Confidence in detection ‘yes’ responses was similarly 
positively correlated with the hue of the target stimulus 
(t(98) = 3.35, p = .001), but was not correlated with the hue 
of the nontarget stimulus (t(98) =  − 0.57, p = .570). Sum evi-
dence in hue space had a marginal positive effect on decision 
confidence when reporting target presence (‘yes’ responses, 
t(98) = 1.89, p = .062).

Finally, confidence in detection ‘no’ responses was 
negatively sensitive to random fluctuations in the hue of 
the target (t(97) =  − 3.32, p = .001), but not the nontarget 
stimulus (t(97) =  − 1.51, p = .135). The overall hue of the 
display also affected confidence in decisions about absence 
(t(97) =  − 3.22, p = .002), without an effect for the hue dif-
ference between the two stimuli (t(97) =  − 1.19, p = .239).

Effects of evidence on decision and confidence: 
Exps. 2 and 3

We plotted optimal behaviour, as well as participants’ 
responses and their confidence in correct responses, as a 
function of perceptual evidence in a two-dimensional rep-
resentational space. First, for each trial we extracted mean 
luminance (minus background luminance) in the first 300 ms 
for the right and left stimuli. These numbers were rounded 
to the closest integer. For each tuple of such integers, we 
extracted the posterior probability for stimulus category 
(Fig. A5, top row), participants’ empirical discrimination 
and detection decisions (middle row), and participants’ sub-
jective confidence in correct responses (bottom row).

Correlations between detection decisions 
and discrimination confidence

If discrimination confidence and detection decisions draw on 
shared representational resources, one may expect that sub-
jects who report higher levels of confidence in detection will 
also be more likely to report target presence in detection. 
This was not the case in any of the four experiments (Exp. 1: 
r =  − .40, 95% CI [−.82,   . 30], t(8) =  − 1.25, p = .248; Exp. 
2: r =  − .08, 95% CI [−.27,   . 11], t(100) =  − 0.83, p = .406; 
Exp. 3: r = .00, 95% CI [−.20,   . 20], t(98) =  − 0.01, p = .990; 
Exp. 4: r =  − .06, 95% CI [−.26,   . 13], t(100) =  − 0.65, 
p = .518).
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Exp. 4: r =  − .03, 95% CI [−.22,   . 16], t(100) =  − 0.31, 
p = .755).

Computational models

General framework

Generative model  Stimuli were represented as two vectors 
of 12 values each �⃗El and �⃗Er , corresponding to the two sen-
sory channels (e.g., the right and left stimuli in Exp. 2). In 
the discrimination task, one sensory channel transmitted 
pure noise (that is, samples were centered around zero), 
and one channel had additional signal in it (samples were 
centered around a nonzero value). The signal channel was 
chosen randomly for each trial with equal probability. In 
the detection task, both sensory channels transmitted pure 
noise.

On top of the presented noise, we added perceptual noise 
to the stimulus, resulting in a degraded representation of 
each sensory channel E′. Importantly, this additional noise 
affected the agent’s decisions and confidence ratings, but did 
not affect the stimulus itself such that trial-wise estimates of 
stimulus energy were unaffected for the reverse correlation 
analysis. The noise was channel and time specific.

Belief update  Agents kept track of three quantities, the log 
likelihood for signal in the right versus the left channels 
(LLRr), and the log likelihood for the presence of signal in 
one of the channels, versus noise in both channels (LLRp). 
Both values were set to 0 at the beginning of each trial. They 
were then updated from the second time point and on (we 
used the first time point as a control, to make sure reverse cor-
relation analysis is not showing any effect of evidence at this 
time point). Log likelihood ratios were updated according to 
the following rule, where i indexes time point within the trial:
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Fig. A5   Top row: Posterior probability of stimulus category given 
perceptual evidence for discrimination (left) and detection (right). 
Middle row: Decision probability as a function of perceptual evi-
dence. Bottom row: Mean confidence in correct responses as a func-
tion of perceptual evidence. (Colour figure online)

Similarly, discrimination confidence effects of the evi-
dence boost manipulation in Exps. 3 and 4 were not corre-
lated with detection decision effects of the same participants 
(Exp. 3: r = .06, 95% CI [−.14,   . 25], t(98) = 0.57, p = .569; 

and

where Ps is the true probability density function of E′ 
values conditioned on signal being present in the channel, 
and Pn is the true probability density function of E′ values 
conditioned on signal being absent. pright =

eLLRr,i

1+eLLRr,i
 is the 

probability that the signal is in the right channel (based on 
all previous samples) and pleft = 1 − pright is the probability 
that the signal is in the left channel (conditioned on signal 

LLRp,i+1 = LLRp,i + log
(

prightPs

(

E�

r,i

)

Pn

(

E�

l,i

)

+ pleftPn

(

E�

r,i

)

Ps

(

E�

l,i

))

− log
(

Pn

(

E�

r,i

))

+ log
(

Pn

(

E�

l,i

))

,

presence). Note that subjects are rationally incorporating 
accurate beliefs about the effect of sensory noise on evidence 
strength in updating their beliefs about the world state.

Decision  In discrimination, agents decided ‘right’ when 
LLRr > 0 and ‘left’ otherwise. In detection, agents decided 
‘present’ when LLRp > 0 and ‘absent’ otherwise.
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Confidence  Confidence was the probability of being correct, 
given an equal prior over the two world states. This equals 
max

(

eLLRr

1+eLLRr
, 1 −

eLLRr

1+eLLRr

)

 i n  d i s c r i m i n a t i o n  a n d 

max
(

eLLRp

1+eLLRp
, 1 −

eLLRp

1+eLLRp

)

 in detection.

Vanilla

In the vanilla model, sensory noise was sampled from N(0, 2).
A python simulation is available in the project’s GitHub.

Firing rate

In the firing rate model, sensory samples were sampled from 
Pois(max(0, 20E)).

A python simulation is available in the project’s GitHub.

Random attention

In the random attention noise model, sensory noise was sam-
pled from N(0, 2) . However, subjects had access to only one 
sensory channel per time point.

At the beginning of each trial, one of the two channels 
was chosen at random with equal probability to be the pre-
ferred channel. Then, at each time point, one of the two 
channels was selected to be attended, with a 0.95 probability 
of being the preferred channel. Subjects then used infor-
mation from this channel only to update their beliefs. For 
example, upon attending the left channel:

and

LLRr,i+1 = LLRr,i + log
(

Pn

(

E�

l,i

))

− log
(

Ps

(

E�

l,i

))

LLRp,i+1 = LLRp,i + log
(

prightPn

(

E�

l,i

)

+ pleftPs

(

E�

l,i

))

− log
(

Pn

(

E�

l,i

))

.

A python simulation is available in the project’s GitHub.

Goal‑directed attention

In the goal-directed attention noise model, sensory noise was 
sampled from N(0, 2) . However, subjects had only access to 
one sensory channel per time point.

The probability of attending the right channel was set to 
S(LLRr), where S(x) = 1

1+e−5x
 . This made agents heavily 

biased to attend the channel that is more likely to include 
signal.

A python simulation is available in the project’s GitHub.

Time resolved decision and confidence kernels 
from model simulations

In the main paper, qualitative model predictions were 
derived after averaging over time points. Here, Fig. A6, A7, 
A8, and A9 depict time-resolved decision and confidence 
kernels. As a sanity check, in these simulations agents only 
incorporated evidence from the second time point and on, 
allowing us to verify that evidence in the first time point 
has zero contribution to decision and confidence kernels.

One noteworthy pattern is that the effect of sum evidence 
on discrimination confidence in the goal-directed model 

Fig. A6   Reverse correlation kernels derived from simulation of the vanilla model. Same conventions as Fig. 5. (Colour figure online)



	 Attention, Perception, & Psychophysics

1 3

Fig. A7   Reverse correlation kernels derived from simulation of the firing rate model. Same conventions as Fig. 5. (Colour figure online)

grows over time within a trial (see Fig. A8C, black curve). 
This is because in this model, the probability of attending 
the signal channel increases with every time point, making 
agents increasingly blind to evidence in the nonsignal chan-
nel, and increasingly sensitive to evidence in the signal chan-
nel. To quantify this effect, we contrasted the time points 
at which the relative- and sum-evidence confidence kernels 
peaked. Indeed, in the goal-directed attention model, the 
sum-evidence kernel peaked significantly later (t(199) = 2.52, 
p = .013). This was not the case in any of the other models 
(vanilla: t(199) =  − 1.28, p = .203; firing rate: t(99) = 1.01, 
p = .315; random attention: t(199) = 0.34, p = .731).

The same effect was not present in empirical kernels 
(Exp. 1: t(9) = 0.15, p = .886; Exp. 2: t(100) = 0.36, p = .721; 
Exp. 3: t(99) =  − 0.73, p = .467; Exp. 4: t(108) =  − 1.81, 
p = .073). This null result is difficult to interpret, given that 
the effect was not very strong in the simulation, and that its 
magnitude is sensitive to the steepness of the sigmoid func-
tion. We therefore do not interpret it further.

Pseudodiscrimination analysis

In our preregistration document (https://​osf.​io/​d3vkm/), we 
specified our plan for pseudodiscrimination analysis, where 

Fig. A8   Reverse correlation kernels derived from simulation of the guided attention model. Same conventions as Fig. 5. (Colour figure online)

https://osf.io/d3vkm/
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Fig. A9   Reverse correlation kernels derived from simulation of the random attention model. Same conventions as Fig. 5. (Colour figure online)

we analyze detection ‘signal’ trials as if they were discrimi-
nation trials:

In this analysis, we will assume that in the majority 
of ‘different’ trials, when participants responded ‘yes’ 

they correctly identified the brighter set. For example, 
a detection trial in which the brighter set was presented 
on the right and in which the participant responded 
‘yes’ will be treated as a discrimination trial in which 
the participant responded ‘right’. Conversely, a trial 

Fig. A10   Decision and confidence pseudo-discrimination kernels, 
Experiment 1. Upper left: Motion energy in the ‘chosen’ (green) and 
‘unchosen’ (purple) direction as a function of time. Bottom left: A 
subtraction between energy in the ‘chosen’ and ‘unchosen’ directions. 
Upper right: Confidence effects for motion energy in the ‘chosen’ 

(green) and ‘unchosen’ (purple) directions. Lower right: A subtrac-
tion between confidence effects in the ‘chosen’ and ‘unchosen’ direc-
tions. Shaded areas represent the mean ±1 standard error. The first 
300 ms of the trial are marked in yellow. (Colour figure online)



	 Attention, Perception, & Psychophysics

1 3

Fig. A11   Decision and confidence pseudodiscrimination kernels, 
Experiment 2. Upper left: Luminance in the ‘chosen’ (green) and 
‘unchosen’ (purple) stimulus as a function of time and spatial posi-
tion. Bottom left: Decision kernel averaged across the four spatial 
positions. Upper right: Confidence effects for motion energy in the 

‘chosen’ (green) and ‘unchosen’ (purple) stimuli. Bottom right: Con-
fidence effects averaged across the four spatial positions. Shaded 
areas represent the mean ±1 standard error. The first 300 ms of the 
trial are marked in yellow. (Colour figure online)

in which the brighter set was presented on the right 
and in which the participant responded ‘no’ will be 
treated as a discrimination trial in which the partici-
pant responded ‘left’. These hypothetical responses 
will then be submitted to the same reverse correlation 
analysis described in the previous section confidence 
kernels.

We subsequently realized that a much simpler approach 
is to contrast ‘yes’ and ‘no’ responses for the true and oppo-
site direction of motion (or flickering stimuli) in signal tri-
als. This alternative approach does not entail treating ‘no’ 
responses as the successful detection of a wrong signal. 
The results of this analysis mostly agree with the preregis-
tered pseudodiscrimination analysis. For completeness, we 
include the preregistered pseudodiscrimination analysis for 
both experiments here.

Exp. 1

Pseudodiscrimination decision kernels were highly similar 
to discrimination decision kernels (see Fig. A10). Here also, 
motion energy during the first 300 ms of the stimulus had a 
significant effect on decision (t(9) = 4.18, p = .002), and on 
decision confidence (t(9) = 3.26, p = .010). However, unlike 

in discrimination, where motion energy in the chosen direc-
tion influenced decision confidence more than motion energy 
in the unchosen direction, no such positive evidence bias was 
observed for detection responses (t(9) = 0.20, p = .849).

While motion energy during the first 300 ms of the 
trial significantly affected confidence in ‘yes’ responses 
(t(9) = 5.52, p < .001), it had no significant effect on confi-
dence in ‘no’ responses (t(9) =  − 0.09, p = .932). However, 
given that the pseudodiscrimination analysis was performed 
on signal trials only, confidence kernels for ‘no’ responses 
were based on fewer trials than confidence kernels for ‘yes’ 
responses, such that the absence of a significant effect in 
‘no’ responses may reflect insufficient statistical power to 
detect one.

Exp. 2

Similar to decision kernels in Exp. 2, random fluctuations 
in luminance during the first 300 ms of the stimulus had 
a significant effect on decision (t(101) = 6.68, p < .001; see 
Fig. A11). However, in Exp. 2, this analysis revealed no 
effect of luminance on decision confidence (t(99) = 1.36, 
p = .178), and no positive evidence bias in confidence judg-
ments (t(99) =  − 0.66, p = .512).
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